Commit 953d1906 by Parameswaran Ajith

minor edits.

parent cbced4e2
Showing with 3 additions and 1 deletions
No preview for this file type
Here we solve the curve fitting problem presented in Sec.~\ref{sec:curve_fitting} using of Bayesian statistical inference. Given some data $d$ and a model $\mathcal{M}$, Bayesian parameter estimation involves computing the posterior distribution of the parameters $\theta$ describing the model. Using Bayes theorem, we can write Given some data $d$ and a model $\mathcal{M}$, Bayesian parameter estimation involves computing the posterior distribution of the parameters $\theta$ describing the model. Using Bayes theorem, we can write
\begin{equation} \begin{equation}
p(\theta | d, \mathcal{M}) = \frac{p(\theta | \mathcal{M}) ~ p(d | \theta , \mathcal{M})}{p(d | \mathcal{M})}, p(\theta | d, \mathcal{M}) = \frac{p(\theta | \mathcal{M}) ~ p(d | \theta , \mathcal{M})}{p(d | \mathcal{M})},
\end{equation} \end{equation}
...@@ -13,6 +13,8 @@ is the evidence of the model $\mathcal{M}$. Bayesian model selection involves co ...@@ -13,6 +13,8 @@ is the evidence of the model $\mathcal{M}$. Bayesian model selection involves co
\end{equation} \end{equation}
\subsubsection{Problems} \subsubsection{Problems}
Here we solve the curve fitting problem presented in Sec.~\ref{sec:curve_fitting} using of Bayesian statistical inference.
\begin{enumerate} \begin{enumerate}
\item Compute the posterior distribution $p(H_0 | d, \mathcal{M}_1)$ of the Hubble constant $H_0$ using the Supernova Cosmology project data $z \leq 0.1$. Assume the Hubble's law [Eq.~\eqref{eq:Hubble_law}] as the model $\mathcal{M}_1$. Assume uniform prior for $H_0$ in the interval $(10, 100)$ km/s/Mpc. You can use a Gaussian likelihood with $\sigma = 1$. That is, \item Compute the posterior distribution $p(H_0 | d, \mathcal{M}_1)$ of the Hubble constant $H_0$ using the Supernova Cosmology project data $z \leq 0.1$. Assume the Hubble's law [Eq.~\eqref{eq:Hubble_law}] as the model $\mathcal{M}_1$. Assume uniform prior for $H_0$ in the interval $(10, 100)$ km/s/Mpc. You can use a Gaussian likelihood with $\sigma = 1$. That is,
\begin{equation} \begin{equation}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or sign in to comment