@@ -14,7 +14,11 @@ is the evidence of the model $\mathcal{M}$. Bayesian model selection involves co
\subsubsection{Problems}
\begin{enumerate}
\item Compute the posterior distribution $p(H_0 | d, \mathcal{M}_1)$ of the Hubble constant $H_0$ using the Supernova Cosmology project data $z \leq0.1$. Assume the Hubble's law [Eq.~\eqref{eq:Hubble_law}] as the model $\mathcal{M}_1$. Assume uniform prior for $H_0$ in the interval $(10, 100)$ km/s/Mpc.
\item Compute the posterior distribution $p(H_0 | d, \mathcal{M}_1)$ of the Hubble constant $H_0$ using the Supernova Cosmology project data $z \leq0.1$. Assume the Hubble's law [Eq.~\eqref{eq:Hubble_law}] as the model $\mathcal{M}_1$. Assume uniform prior for $H_0$ in the interval $(10, 100)$ km/s/Mpc. You can use a Gaussian likelihood with $\sigma=1$. That is,
where $d_i$ and $z_i$ are the samples of the luminosity distance and redshift from the data and $d_L(z_i, \mathcal{M}_1)$ is the relation between luminosity distance and redshift predicted by model $\mathcal{M}_1$ evaluated at redshift $z_i$.
\item Repeat the analysis using the full data set. What are the differences that you see in the posterior?
\item Compute the posterior distribution $p(H_0, \Omega_M | d, \mathcal{M}_2)$ of the Hubble constant $H_0$ and matter density $\Omega_M$ using the $\Lambda$CDM model $\mathcal{M}_2$ [Eq.~\eqref{eq:lcdm}]. You can compute the posterior on a 2-dimensional grid. Assume uniform priors for $H_0$ in the interval $(10, 100)$ km/s/Mpc and for $\Omega_M$ in the interval (0, 1).
\item Compute the likelihood ratio (Bayes factor) between the Hubble's law and $\Lambda$CDM model by computing the evidences [Eq.~\eqref{eq:evidence}] of the two models using a numerical integration method that we learned in Sec.~\ref{sec:integr}.