Here we solve the curve fitting problem presented in Sec.~\ref{sec:curve_fitting} using of Bayesian statistical inference. Given some data $d$ and a model $\mathcal{M}$, Bayesian parameter estimation involves computing the posterior distribution of the parameters $\theta$ describing the model. Using Bayes theorem, we can write
Given some data $d$ and a model $\mathcal{M}$, Bayesian parameter estimation involves computing the posterior distribution of the parameters $\theta$ describing the model. Using Bayes theorem, we can write
@@ -13,6 +13,8 @@ is the evidence of the model $\mathcal{M}$. Bayesian model selection involves co
\end{equation}
\subsubsection{Problems}
Here we solve the curve fitting problem presented in Sec.~\ref{sec:curve_fitting} using of Bayesian statistical inference.
\begin{enumerate}
\item Compute the posterior distribution $p(H_0 | d, \mathcal{M}_1)$ of the Hubble constant $H_0$ using the Supernova Cosmology project data $z \leq0.1$. Assume the Hubble's law [Eq.~\eqref{eq:Hubble_law}] as the model $\mathcal{M}_1$. Assume uniform prior for $H_0$ in the interval $(10, 100)$ km/s/Mpc. You can use a Gaussian likelihood with $\sigma=1$. That is,