Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
Jigyasa Watwani
/
growth-pattern-control
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Members
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit
aa6d731d
authored
Nov 11, 2022
by
Jigyasa Watwani
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
error vs dt for linear growth model
parent
82b94e80
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
118 additions
and
65 deletions
euler_error/linear_growth_euler_errors.py
growing_domain/diffusion_on_growing_domain.py
euler_error/linear_growth_euler_errors.py
0 → 100644
View file @
aa6d731d
# moving domain diffusion advection equation
# advection velocity v = alpha*x. domain also moves by thsi velocity
# boundary condition: diffusive flux at the boundaries [0,1] is zero
# initial condition c(x,0) = 1 + 0.2*cos(pi x/L) ; satisfies the boundary condition
# exact solution: c(x,t) = exp(-alpha * t)(1 + 0.2 cos(pi * x/L0 *exp(-alpha*t)) * exp(-pi**2*D*(1-exp(-2*alpha*t)/(2*alpha*L0**2))))
import
numpy
as
np
import
dolfin
as
df
import
matplotlib.pyplot
as
plt
import
progressbar
from
scipy.optimize
import
curve_fit
df
.
set_log_level
(
df
.
LogLevel
.
ERROR
)
df
.
parameters
[
'form_compiler'
][
'optimize'
]
=
True
def
advection_diffusion
(
Nx
,
L
,
Nt
,
tmax
,
v
,
D
):
# mesh, function space, function, test function
mesh
=
df
.
IntervalMesh
(
Nx
,
0
,
L
)
function_space
=
df
.
FunctionSpace
(
mesh
,
'P'
,
1
)
c
,
tc
=
df
.
Function
(
function_space
),
df
.
TestFunction
(
function_space
)
# initial condition
c0
=
df
.
interpolate
(
df
.
Expression
(
'1 + 0.2*cos(m * pi*x[0]/L)'
,
pi
=
np
.
pi
,
L
=
L
,
m
=
m
,
degree
=
1
),
function_space
)
# arrays
times
=
np
.
linspace
(
0
,
tmax
,
Nt
+
1
)
dt
=
times
[
1
]
-
times
[
0
]
x_array
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
x_array
[
0
]
=
mesh
.
coordinates
()[:,
0
]
c_array
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
c_array
[
0
]
=
c0
.
compute_vertex_values
(
mesh
)
# form
u
=
df
.
project
(
v
,
function_space
)
form
=
(
df
.
inner
((
c
-
c0
)
/
dt
,
tc
)
+
df
.
inner
((
u
*
c0
)
.
dx
(
0
),
tc
)
+
D
*
df
.
inner
(
tc
.
dx
(
0
),
c
.
dx
(
0
)))
*
df
.
dx
(
mesh
)
for
i
in
progressbar
.
progressbar
(
range
(
1
,
len
(
times
))):
v
.
t
=
times
[
i
]
u
.
assign
(
df
.
project
(
v
,
function_space
))
df
.
solve
(
form
==
0
,
c
)
c_array
[
i
]
=
c
.
compute_vertex_values
(
mesh
)
c0
.
assign
(
c
)
df
.
ALE
.
move
(
mesh
,
df
.
project
(
u
*
dt
,
function_space
))
x_array
[
i
]
=
mesh
.
coordinates
()[:,
0
]
return
[
c_array
,
x_array
]
Nx
,
L
,
tmax
,
D
,
b
,
m
=
100
,
1
,
1
,
0.1
,
0.01
,
2
v
=
df
.
Expression
(
'b*x[0]/(L + b*t)'
,
b
=
b
,
L
=
L
,
t
=
0
,
degree
=
1
)
Nt_array
=
np
.
array
([
5
,
10
,
15
,
20
,
25
,
30
])
# , 400, 800, 1600, 3200, 6400, 12800])
dt_array
=
tmax
/
(
Nt_array
)
error_in_c
=
np
.
zeros
(
len
(
Nt_array
))
for
i
in
range
(
len
(
Nt_array
)):
c
,
x
=
advection_diffusion
(
Nx
,
L
,
Nt_array
[
i
],
tmax
,
v
,
D
)
times
=
np
.
linspace
(
0
,
tmax
,
Nt_array
[
i
]
+
1
)
c_exact
=
np
.
zeros
((
Nt_array
[
i
]
+
1
,
Nx
+
1
))
for
j
in
range
(
0
,
Nt_array
[
i
]
+
1
):
l
=
L
+
b
*
times
[
j
]
c_exact
[
j
]
=
(
L
/
l
)
*
(
1
+
0.2
*
np
.
cos
(
m
*
np
.
pi
*
x
[
j
]
/
l
)
*
np
.
exp
(
-
m
**
2
*
np
.
pi
**
2
*
D
*
times
[
j
]
/
(
L
*
l
)))
error_in_c
[
i
]
=
np
.
max
(
np
.
abs
(
c
[
-
1
]
-
c_exact
[
-
1
]))
def
linear_func
(
x
,
a
,
b
):
return
a
*
x
+
b
popt
,
pcov
=
curve_fit
(
linear_func
,
np
.
log
(
dt_array
),
np
.
log
(
error_in_c
))
print
(
'The slope of log(error) vs log(dt) is'
,
popt
[
0
])
plt
.
loglog
(
dt_array
,
error_in_c
,
'bo'
)
plt
.
xlabel
(
'log(dt)'
)
plt
.
ylabel
(
'log(error)'
)
plt
.
show
()
growing_domain/diffusion_on_growing_domain.py
View file @
aa6d731d
import
dolfin
as
df
import
mshr
as
ms
import
numpy
as
np
import
progressbar
import
os
import
meshzoo
df
.
set_log_level
(
df
.
LogLevel
.
ERROR
)
df
.
parameters
[
'form_compiler'
][
'optimize'
]
=
True
...
...
@@ -12,40 +12,27 @@ class GrowthDiffusion(object):
# read in parameters
for
key
in
parameters
:
setattr
(
self
,
key
,
parameters
[
key
])
sigma
=
{
'none'
:
'0.0'
,
'linear'
:
'b/(L0+b*t)'
,
'exponential'
:
'b'
}
# define the growth velocity field
growth_direction
=
tuple
([
'x['
+
str
(
i
)
+
']'
for
i
in
range
(
self
.
dimension
)])
#growth_direction = ('x[0]', )
self
.
growth_direction
=
df
.
Expression
(
growth_direction
,
degree
=
1
)
self
.
sigma
=
df
.
Expression
(
sigma
[
self
.
growth
],
L0
=
self
.
system_size
,
b
=
self
.
growth_parameter
,
t
=
0
,
degree
=
1
)
# set up mesh
# and define the growth velocity field
if
self
.
dimension
==
1
:
if
self
.
growth
==
'none'
:
self
.
velocity
=
df
.
Expression
((
's*x[0]'
,),
s
=
df
.
Constant
(
0
),
t
=
0
,
degree
=
0
)
if
self
.
growth
==
'linear'
:
self
.
velocity
=
df
.
Expression
((
'b*x[0]/(L0 + b*t)'
,),
b
=
self
.
growth_parameter
,
L0
=
self
.
system_size
,
t
=
0
,
degree
=
0
)
if
self
.
growth
==
'exponential'
:
self
.
velocity
=
df
.
Expression
((
's*x[0]'
),
s
=
df
.
Constant
(
self
.
growth_parameter
),
t
=
0
,
degree
=
0
)
self
.
mesh
=
df
.
IntervalMesh
(
self
.
resolution
,
0
,
self
.
system_size
)
elif
self
.
dimension
==
2
:
if
self
.
growth
==
'none'
:
self
.
velocity
=
df
.
Expression
((
's*x[0]'
,
's*x[1]'
),
s
=
df
.
Constant
(
0
),
t
=
0
,
degree
=
0
)
if
self
.
growth
==
'linear'
:
self
.
velocity
=
df
.
Expression
((
'b*x[0]/(L0 + b*t)'
,
'b*x[1]/(L0 + b*t)'
),
b
=
self
.
growth_parameter
,
L0
=
self
.
system_size
,
t
=
0
,
degree
=
0
)
if
self
.
growth
==
'exponential'
:
self
.
velocity
=
df
.
Expression
((
's*x[0]'
,
's*x[1]'
),
s
=
df
.
Constant
(
self
.
growth_parameter
),
t
=
0
,
degree
=
0
)
points
,
cells
=
meshzoo
.
disk
(
self
.
resolution
,
2
*
self
.
resolution
)
points
*=
self
.
system_size
self
.
mesh
=
df
.
Mesh
()
e
=
df
.
MeshEditor
()
e
.
open
(
self
.
mesh
,
type
=
'triangle'
,
tdim
=
2
,
gdim
=
2
)
e
.
init_vertices
(
len
(
points
))
e
.
init_cells
(
len
(
cells
))
for
n
in
range
(
len
(
points
)):
e
.
add_vertex
(
n
,
[
points
[
n
,
0
],
points
[
n
,
1
]])
for
n
in
range
(
len
(
cells
)):
e
.
add_cell
(
n
,
cells
[
n
])
e
.
close
()
elif
self
.
dimension
==
2
:
geometry
=
ms
.
Circle
(
df
.
Point
(
0
,
0
),
self
.
system_size
)
self
.
mesh
=
ms
.
generate_mesh
(
geometry
,
self
.
resolution
)
elif
self
.
dimension
==
3
:
geometry
=
ms
.
Sphere
(
df
.
Point
(
0
,
0
,
0
),
self
.
system_size
)
self
.
mesh
=
ms
.
generate_mesh
(
geometry
,
self
.
resolution
)
# create mesh, function space, define function, test function
self
.
SFS
=
df
.
FunctionSpace
(
self
.
mesh
,
'P'
,
1
)
...
...
@@ -54,69 +41,59 @@ class GrowthDiffusion(object):
self
.
c0
=
df
.
Function
(
self
.
SFS
)
tc
=
df
.
TestFunction
(
self
.
SFS
)
# self.velocity.t = 0
self
.
vel
=
df
.
project
(
self
.
velocity
,
self
.
VFS
)
self
.
velocity
=
df
.
project
(
self
.
sigma
*
self
.
growth_direction
,
self
.
VFS
)
self
.
form
=
(
df
.
inner
((
self
.
c
-
self
.
c0
)
/
self
.
timestep
,
tc
)
+
df
.
inner
(
df
.
div
(
self
.
vel
*
self
.
c0
),
tc
)
+
df
.
inner
(
df
.
div
(
self
.
vel
ocity
*
self
.
c0
),
tc
)
+
self
.
Dc
*
df
.
inner
(
df
.
nabla_grad
(
self
.
c
),
df
.
nabla_grad
(
tc
))
-
df
.
inner
(
self
.
reaction_rate
*
self
.
c
,
tc
)
)
*
df
.
dx
def
solve
(
self
):
times
=
np
.
arange
(
0
,
self
.
maxtime
+
self
.
timestep
,
self
.
timestep
)
if
self
.
growth
==
'linear'
:
cFile
=
df
.
XDMFFile
(
'concentration_linear.xdmf'
)
elif
self
.
growth
==
'exponential'
:
cFile
=
df
.
XDMFFile
(
'concentration_exponential.xdmf'
)
elif
self
.
growth
==
'none'
:
cFile
=
df
.
XDMFFile
(
'concentration_no_growth.xdmf'
)
fname
=
params
[
'timestamp'
]
+
'_concentration'
cFile
=
df
.
XDMFFile
(
fname
+
'.xdmf'
)
# initial condition
if
self
.
dimension
==
1
:
c0
=
df
.
Expression
(
'1 + 0.1*cos(pi*m*x[0]/L)'
,
pi
=
np
.
pi
,
m
=
1
,
L
=
self
.
system_size
,
degree
=
1
)
elif
self
.
dimension
==
2
:
c0
=
df
.
Expression
(
'1 + 0.1*cos(pi*m*sqrt(x[0]*x[0]+x[1]*x[1])/L)'
,
pi
=
np
.
pi
,
m
=
2
,
L
=
self
.
system_size
,
degree
=
1
)
r2
=
"+"
.
join
([
'x['
+
str
(
i
)
+
']*x['
+
str
(
i
)
+
']'
for
i
in
range
(
self
.
dimension
)])
c0
=
'1 + 0.1*cos(pi*m*(
%
s)/L)'
%
r2
c0
=
df
.
Expression
(
c0
,
pi
=
np
.
pi
,
m
=
1
,
L
=
self
.
system_size
,
degree
=
1
)
self
.
c0
.
assign
(
df
.
project
(
c0
,
self
.
SFS
))
# save data
if
self
.
growth
==
'linear'
:
cFile
.
write_checkpoint
(
self
.
c0
,
'concentration_linear'
,
0.0
)
elif
self
.
growth
==
'exponential'
:
cFile
.
write_checkpoint
(
self
.
c0
,
'concentration_exponential'
,
0.0
)
elif
self
.
growth
==
'none'
:
cFile
.
write_checkpoint
(
self
.
c0
,
'concentration_no_growth'
,
0.0
)
cFile
.
write_checkpoint
(
self
.
c0
,
fname
,
times
[
0
])
# time stepping
for
i
in
progressbar
.
progressbar
(
range
(
1
,
len
(
times
))):
# get velocity
self
.
velocity
.
t
=
times
[
i
-
1
]
self
.
vel
.
assign
(
df
.
project
(
self
.
velocity
,
self
.
VFS
))
self
.
sigma
.
t
=
times
[
i
-
1
]
self
.
vel
ocity
.
assign
(
df
.
project
(
self
.
sigma
*
self
.
growth_direction
,
self
.
VFS
))
# solve
df
.
solve
(
self
.
form
==
0
,
self
.
c
)
# update
self
.
c0
.
assign
(
self
.
c
)
# save data
if
self
.
growth
==
'linear'
:
cFile
.
write_checkpoint
(
self
.
c0
,
'concentration_linear'
,
times
[
i
],
append
=
True
)
elif
self
.
growth
==
'exponential'
:
cFile
.
write_checkpoint
(
self
.
c0
,
'concentration_exponential'
,
times
[
i
],
append
=
True
)
elif
self
.
growth
==
'none'
:
cFile
.
write_checkpoint
(
self
.
c0
,
'concentration_no_growth'
,
times
[
i
],
append
=
True
)
cFile
.
write_checkpoint
(
self
.
c0
,
fname
,
times
[
i
],
append
=
True
)
# move mesh
displacement
=
df
.
project
(
self
.
vel
*
self
.
timestep
,
self
.
VFS
)
displacement
=
df
.
project
(
self
.
vel
ocity
*
self
.
timestep
,
self
.
VFS
)
df
.
ALE
.
move
(
self
.
mesh
,
displacement
)
cFile
.
close
()
if
__name__
==
'__main__'
:
import
json
import
json
,
datetime
assert
os
.
path
.
isfile
(
'parameters.json'
),
'parameters.json file not found'
with
open
(
'parameters.json'
)
as
jsonFile
:
params
=
json
.
load
(
jsonFile
)
# parse parameters
assert
params
[
'growth'
]
in
(
'none'
,
'linear'
,
'exponential'
),
'Unknown growth model'
assert
params
[
'dimension'
]
in
(
1
,
2
,
3
)
assert
params
[
'growth'
]
in
(
'none'
,
'linear'
,
'exponential'
),
'Unknown growth model'
timestamp
=
datetime
.
datetime
.
now
()
.
strftime
(
"
%
d
%
m
%
y-
%
H
%
M
%
S"
)
params
[
'timestamp'
]
=
timestamp
gd
=
GrowthDiffusion
(
params
)
gd
.
solve
()
\ No newline at end of file
gd
.
solve
()
with
open
(
params
[
'timestamp'
]
+
'_parmeters.json'
,
"w"
)
as
fp
:
json
.
dump
(
params
,
fp
,
indent
=
4
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment