Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
Jigyasa Watwani
/
growth-pattern-control
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Members
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit
73ac2ed0
authored
Sep 09, 2022
by
Jigyasa Watwani
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
analytical and numerical solutions match exactly for alpha zero
parent
1a71fc46
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
74 additions
and
85 deletions
moving_domain/moving_heat_equation_analytical.py
moving_domain/moving_heat_equation_analytical.py
View file @
73ac2ed0
import
dolfin
as
df
import
numpy
as
np
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
matplotlib.pyplot
as
plt
from
matplotlib.widgets
import
Slider
from
matplotlib.widgets
import
Slider
import
progressbar
import
progressbar
import
dolfin
as
df
df
.
set_log_level
(
df
.
LogLevel
.
ERROR
)
df
.
set_log_level
(
df
.
LogLevel
.
ERROR
)
df
.
parameters
[
'form_compiler'
][
'optimize'
]
=
True
df
.
parameters
[
'form_compiler'
][
'optimize'
]
=
True
# parameters
def
advection_diffusion
(
Nx
,
L
,
Nt
,
tmax
,
D
,
alpha
):
alpha
=
1.0
# mesh, function space, function, test function
T
=
1
mesh
=
df
.
IntervalMesh
(
Nx
,
0
,
L
)
dt
=
0.001
SFS
=
df
.
FunctionSpace
(
mesh
,
'P'
,
1
)
L0
=
1
c
=
df
.
Function
(
SFS
)
D
=
1.0
tc
=
df
.
TestFunction
(
SFS
)
Nx
=
2000
Nt
=
1000
# x and t arrays
t
=
np
.
linspace
(
0
,
T
,
Nt
)
times
=
np
.
linspace
(
0
,
tmax
,
Nt
+
1
)
dt
=
times
[
1
]
-
times
[
0
]
# diffusion and advection
def
diffusion
(
c
,
tc
):
# initial condition
return
(
D
*
df
.
inner
(
c
.
dx
(
0
),
tc
.
dx
(
0
)))
c0
=
df
.
Function
(
SFS
)
c0
.
interpolate
(
df
.
Expression
(
'1 + 0.2 * cos(pi*x[0]/L)'
,
pi
=
np
.
pi
,
L
=
L
,
degree
=
1
))
def
advection
(
c
,
tc
,
v
):
u
=
df
.
interpolate
(
v
,
c
.
function_space
())
# arrays
return
(
df
.
inner
((
u
*
c
)
.
dx
(
0
),
tc
))
c_array
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
x_array
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
# create mesh
x_array
[
0
]
=
mesh
.
coordinates
()[:,
0
]
mesh
=
df
.
IntervalMesh
(
Nx
,
0
,
L0
)
c_array
[
0
]
=
c0
.
compute_vertex_values
(
mesh
)
x
=
mesh
.
coordinates
()
# v = df.Constant(1.0)
# velocity
v
=
df
.
Expression
(
'alpha*x[0]'
,
alpha
=
alpha
,
degree
=
1
)
v
=
df
.
Expression
(
'alpha*x[0]'
,
alpha
=
alpha
,
degree
=
1
)
u
=
df
.
interpolate
(
v
,
SFS
)
# create function space
conc_element
=
df
.
FiniteElement
(
'P'
,
mesh
.
ufl_cell
(),
1
)
# form
function_space
=
df
.
FunctionSpace
(
mesh
,
conc_element
)
cform
=
(
df
.
inner
((
c
-
c0
)
/
dt
,
tc
)
+
D
*
df
.
inner
(
df
.
nabla_grad
(
c
),
df
.
nabla_grad
(
tc
))
# initial condition
+
df
.
inner
((
u
*
c
)
.
dx
(
0
),
tc
)
)
*
df
.
dx
c0
=
df
.
interpolate
(
df
.
Expression
(
'1 + 0.2*cos(pi*x[0]/L0)'
,
pi
=
np
.
pi
,
L0
=
L0
,
degree
=
1
),
function_space
)
c0_array
=
c0
.
compute_vertex_values
(
mesh
)
# solve
for
i
in
progressbar
.
progressbar
(
range
(
1
,
Nt
+
1
)):
# define variational problem
df
.
solve
(
cform
==
0
,
c
)
c
=
df
.
Function
(
function_space
)
c_array
[
i
]
=
c
.
compute_vertex_values
(
mesh
)
tc
=
df
.
TestFunction
(
function_space
)
c0
.
assign
(
c
)
form
=
(
df
.
inner
((
c
-
c0
)
/
dt
,
tc
)
df
.
ALE
.
move
(
mesh
,
df
.
Expression
(
'v*dt'
,
v
=
v
,
dt
=
dt
,
degree
=
1
))
+
diffusion
(
c
,
tc
)
x_array
[
i
]
=
mesh
.
coordinates
()[:,
0
]
+
advection
(
c
,
tc
,
v
)
)
return
c_array
,
x_array
form
=
form
*
df
.
dx
# plot c(x,t) numerical and analytical for given dt
# time stepping
Nx
,
L
,
Nt
,
tmax
,
D
,
alpha
=
64
,
1
,
100
,
1
,
1
,
1
ctot
=
np
.
zeros_like
(
t
)
x
=
advection_diffusion
(
Nx
,
L
,
Nt
,
tmax
,
D
,
alpha
)[
1
]
x_array
=
np
.
zeros
((
len
(
t
),
mesh
.
num_vertices
()))
# exact solution
x_array
[
0
]
=
mesh
.
coordinates
()[:,
0
]
c_exact
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
c_array
=
np
.
zeros
((
len
(
t
),
len
(
c0_array
)))
times
=
np
.
linspace
(
0
,
tmax
,
Nt
+
1
)
c_array
[
0
]
=
c0_array
for
j
in
range
(
Nt
+
1
):
ctot
[
0
]
=
df
.
assemble
(
c0
*
df
.
dx
(
mesh
))
if
alpha
==
0
:
c_exact
[
j
]
=
1
+
0.2
*
np
.
cos
(
np
.
pi
*
x
[
j
]
/
L
)
*
np
.
exp
(
-
np
.
pi
**
2
*
D
*
times
[
j
]
/
L
**
2
)
for
n
in
progressbar
.
progressbar
(
range
(
1
,
len
(
t
))):
else
:
df
.
solve
(
form
==
0
,
c
)
c_exact
[
j
]
=
1
+
0.2
*
np
.
cos
(
np
.
pi
*
x
[
j
]
*
np
.
exp
(
-
alpha
*
times
[
j
])
/
L
)
*
np
.
exp
(
-
np
.
pi
**
2
*
D
*
(
1
-
np
.
exp
(
-
2
*
alpha
*
times
[
j
]))
/
(
2
*
alpha
*
L
**
2
))
*
np
.
exp
(
-
alpha
*
times
[
j
])
c_array
[
n
]
=
c
.
compute_vertex_values
(
mesh
)
c0
.
assign
(
c
)
c
=
advection_diffusion
(
Nx
,
L
,
Nt
,
tmax
,
D
,
alpha
)[
0
]
ctot
[
n
]
=
df
.
assemble
(
c0
*
df
.
dx
(
mesh
))
times
=
np
.
linspace
(
0
,
tmax
,
Nt
+
1
)
df
.
ALE
.
move
(
mesh
,
df
.
Expression
(
'v*dt'
,
v
=
v
,
dt
=
dt
,
degree
=
1
))
fig
,
ax
=
plt
.
subplots
(
1
,
1
,
figsize
=
(
8
,
6
))
x_array
[
n
]
=
mesh
.
coordinates
()[:,
0
]
ax
.
set_xlabel
(
r'$x$'
)
ax
.
set_ylabel
(
r'$c(x,t)$'
)
# analytical solution
ax
.
set_xlim
(
np
.
min
(
x
)
-
2
,
np
.
max
(
x
)
+
2
)
c_exact
=
np
.
zeros
((
len
(
t
),
len
(
x
)))
ax
.
set_ylim
(
np
.
min
(
c
)
-
2
,
np
.
max
(
c
)
+
2
)
for
i
in
range
(
len
(
t
)):
cplot
,
=
ax
.
plot
(
x
[
0
],
c
[
0
],
'go'
,
ms
=
1
)
xprime
=
x_array
[
0
]
/
(
L0
*
np
.
exp
(
alpha
*
t
[
i
]))
cexactplot
,
=
ax
.
plot
(
x
[
0
],
c_exact
[
0
])
tprime
=
(
D
/
(
2
*
alpha
*
L0
**
2
))
*
(
1
-
np
.
exp
(
-
2
*
alpha
*
t
[
i
]))
int
=
np
.
exp
(
-
alpha
*
t
[
i
])
c_exact
[
i
]
=
int
*
(
1
+
0.2
*
np
.
cos
(
np
.
pi
*
xprime
)
*
np
.
exp
(
-
np
.
pi
**
2
*
tprime
))
# plot c(x,t) computed numerically
fig
,
ax_comp
=
plt
.
subplots
(
1
,
1
,
figsize
=
(
8
,
6
))
ax_comp
.
set_xlabel
(
r'$x$'
)
ax_comp
.
set_ylabel
(
r'$c(x,t)$'
)
ax_comp
.
set_xlim
(
np
.
min
(
x_array
)
-
1
,
np
.
max
(
x_array
)
+
1
)
ax_comp
.
set_ylim
(
np
.
min
(
c_array
)
-
1
,
np
.
max
(
c_array
)
+
1
)
cplot
,
=
ax_comp
.
plot
(
x_array
[
0
],
c0_array
)
c_exactplot
,
=
ax_comp
.
plot
(
x_array
[
0
],
c_exact
[
0
],
'ro'
,
markersize
=
3
,
markevery
=
50
)
def
update
(
value
):
def
update
(
value
):
ti
=
np
.
abs
(
t
-
value
)
.
argmin
()
ti
=
np
.
abs
(
times
-
value
)
.
argmin
()
cplot
.
set_xdata
(
x_array
[
ti
])
cplot
.
set_xdata
(
x
[
ti
])
cplot
.
set_ydata
(
c_array
[
ti
])
cplot
.
set_ydata
(
c
[
ti
])
c_exactplot
.
set_xdata
(
x_array
[
ti
])
cexactplot
.
set_xdata
(
x
[
ti
])
c_exactplot
.
set_ydata
(
c_exact
[
ti
])
cexactplot
.
set_ydata
(
c_exact
[
ti
])
plt
.
draw
()
plt
.
draw
()
sax
=
plt
.
axes
([
0.1
,
0.92
,
0.7
,
0.02
])
sax
=
plt
.
axes
([
0.1
,
0.92
,
0.7
,
0.02
])
slider
=
Slider
(
sax
,
r'$t/\tau$'
,
min
(
t
),
max
(
t
),
slider
=
Slider
(
sax
,
r'$t/\tau$'
,
min
(
t
imes
),
max
(
times
),
valinit
=
min
(
t
),
valfmt
=
'
%3.1
f'
,
valinit
=
min
(
t
imes
),
valfmt
=
'
%3.1
f'
,
fc
=
'#999999'
)
fc
=
'#999999'
)
slider
.
drawon
=
False
slider
.
drawon
=
False
slider
.
on_changed
(
update
)
slider
.
on_changed
(
update
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment