Commit 341881ab by Jigyasa Watwani

growing domain 1D diffusion

parent d00b7d81
import dolfin as df
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
import progressbar
df.set_log_level(df.LogLevel.ERROR)
df.parameters['form_compiler']['optimize'] = True
def advection_diffusion(Nx, L, Nt, tmax, D, tstop, m):
# mesh, function space, function, test function
mesh = df.IntervalMesh(Nx, 0, L)
SFS = df.FunctionSpace(mesh, 'P', 1)
c = df.Function(SFS)
tc = df.TestFunction(SFS)
# x and t arrays
times = np.linspace(0, tmax, Nt+1)
dt = times[1] - times[0]
# initial condition
c0 = df.Function(SFS)
c0.interpolate(df.Expression('1 + 0.2 * cos(m * pi*x[0]/L)', m = m, pi=np.pi, L=L, degree=1))
# arrays
c_array = np.zeros((Nt+1, Nx+1))
x_array = np.zeros((Nt+1, Nx+1))
x_array[0] = mesh.coordinates()[:, 0]
c_array[0] = c0.compute_vertex_values(mesh)
# velocity
u = df.Expression('(t < tstop ? alpha0 : 0)*x[0]', alpha0 = alpha0, tstop=tstop, t=0, degree=0)
uh = df.project(u, SFS)
# form
cform = (df.inner((c - c0)/dt, tc)
+ D * df.inner(df.nabla_grad(c), df.nabla_grad(tc))
+ df.inner((uh*c).dx(0), tc) )* df.dx
# solve
for i in progressbar.progressbar(range(1, Nt+1)):
u.t = times[i]
uh.assign(df.project(u, SFS))
df.solve(cform == 0, c)
c_array[i] = c.compute_vertex_values(mesh)
c0.assign(c)
df.ALE.move(mesh, df.project(uh*dt, SFS))
x_array[i] = mesh.coordinates()[:,0]
return c_array, x_array
# plot c(x,t) numerical and analytical for given dt
dx, L, dt, tmax, D, m = 0.01, 1, 0.01, 100, 0.01, 2
alpha0, tstop = 0.01, 3
Nx = int(L/dx)
Nt = int(tmax/dt)
times = np.linspace(0, tmax, Nt+1)
# numerical solution
c, x = advection_diffusion(Nx, L, Nt, tmax, D, tstop, m)
# analytical solution
c_exact = np.zeros((Nt+1, Nx+1))
for j in range(0, len(times)):
if times[j] <= tstop:
# diffusion-advection on moving domain with velocity alpha0*x
alpha = alpha0
l = L * np.exp(alpha * times[j])
beta = (-D * m**2 * np.pi**2 /(2 *alpha * L**2)) * (1 - np.exp(-2 * alpha * times[j]))
c_exact[j] = np.exp(-alpha * times[j])* (1 + 0.2 * np.cos(m * np.pi*x[j]/l) * np.exp(beta))
else:
# diffusion on fixed domain of length L = L0*exp(alpha0 * tc) with initial condition to be the profile at tc
l = L * np.exp(alpha0 * tstop)
beta = -D * m**2 * np.pi**2*(times[j] - tstop)/l**2 - np.pi**2 * D * m**2/(2*L**2*alpha0) * (1 - np.exp(-2 *alpha0 *tstop))
c_exact[j] = np.exp(-alpha0 * tstop) * (1 + 0.2 * np.exp(beta) * np.cos(m * np.pi * x[j]/l))
fig, ax = plt.subplots(1,1,figsize=(8,6))
ax.set_xlabel(r'$x$')
ax.set_ylabel(r'$c(x,t)$')
ax.set_xlim(np.min(x), np.max(x))
ax.set_ylim(min(np.min(c), np.min(c_exact)), max(np.max(c), np.max(c_exact)))
ax.grid(True)
cplot, = ax.plot(x[0], c[0], '--',label = 'Numerical solution')
c_exactplot, = ax.plot(x[0], c_exact[0],label = 'Exact solution')
def update(value):
ti = np.abs(times-value).argmin()
cplot.set_xdata(x[ti])
cplot.set_ydata(c[ti])
c_exactplot.set_xdata(x[ti])
c_exactplot.set_ydata(c_exact[ti])
plt.draw()
sax = plt.axes([0.1, 0.92, 0.7, 0.02])
slider = Slider(sax, r'$t/\tau$', min(times), max(times),
valinit=min(times), valfmt='%3.1f',
fc='#999999')
slider.drawon = False
slider.on_changed(update)
ax.legend(loc=0)
plt.show()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or sign in to comment