Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
Jigyasa Watwani
/
growth-pattern-control
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Members
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit
d00b7d81
authored
Dec 22, 2022
by
Jigyasa Watwani
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
1D growing domain diffusion
parent
3c68cf08
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
304 additions
and
0 deletions
growing_domain/given_v_get_rho_c/1D_growth/exp_growth.py
growing_domain/given_v_get_rho_c/1D_growth/linear_growth.py
growing_domain/given_v_get_rho_c/1D_growth/time_dependent_alpha_exp_growth.py.py
growing_domain/given_v_get_rho_c/1D_growth/exp_growth.py
0 → 100644
View file @
d00b7d81
import
dolfin
as
df
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
matplotlib.widgets
import
Slider
import
progressbar
df
.
set_log_level
(
df
.
LogLevel
.
ERROR
)
df
.
parameters
[
'form_compiler'
][
'optimize'
]
=
True
def
advection_diffusion
(
Nx
,
L
,
Nt
,
tmax
,
D
,
alpha
):
# mesh, function space, function, test function
mesh
=
df
.
IntervalMesh
(
Nx
,
0
,
L
)
SFS
=
df
.
FunctionSpace
(
mesh
,
'P'
,
1
)
c
=
df
.
Function
(
SFS
)
tc
=
df
.
TestFunction
(
SFS
)
# x and t arrays
times
=
np
.
linspace
(
0
,
tmax
,
Nt
+
1
)
dt
=
times
[
1
]
-
times
[
0
]
# initial condition
c0
=
df
.
Function
(
SFS
)
c0
.
interpolate
(
df
.
Expression
(
'1 + 0.2 * cos(pi*x[0]/L)'
,
pi
=
np
.
pi
,
L
=
L
,
degree
=
1
))
# arrays
c_array
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
x_array
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
x_array
[
0
]
=
mesh
.
coordinates
()[:,
0
]
c_array
[
0
]
=
c0
.
compute_vertex_values
(
mesh
)
# velocity
v
=
df
.
Expression
(
'alpha*x[0]'
,
alpha
=
alpha
,
degree
=
1
)
u
=
df
.
interpolate
(
v
,
SFS
)
# form
cform
=
(
df
.
inner
((
c
-
c0
)
/
dt
,
tc
)
+
D
*
df
.
inner
(
df
.
nabla_grad
(
c
),
df
.
nabla_grad
(
tc
))
+
df
.
inner
((
u
*
c
)
.
dx
(
0
),
tc
)
)
*
df
.
dx
# solve
for
i
in
progressbar
.
progressbar
(
range
(
1
,
Nt
+
1
)):
df
.
solve
(
cform
==
0
,
c
)
c_array
[
i
]
=
c
.
compute_vertex_values
(
mesh
)
c0
.
assign
(
c
)
df
.
ALE
.
move
(
mesh
,
df
.
Expression
(
'v*dt'
,
v
=
v
,
dt
=
dt
,
degree
=
1
))
x_array
[
i
]
=
mesh
.
coordinates
()[:,
0
]
return
c_array
,
x_array
# plot c(x,t) numerical and analytical for given dt
dx
,
L
,
dt
,
tmax
,
D
,
alpha
=
0.01
,
1
,
0.01
,
20
,
0.1
,
0.01
Nx
=
int
(
L
/
dx
)
Nt
=
int
(
tmax
/
dt
)
x
=
advection_diffusion
(
Nx
,
L
,
Nt
,
tmax
,
D
,
alpha
)[
1
]
# exact solution
c_exact
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
times
=
np
.
linspace
(
0
,
tmax
,
Nt
+
1
)
for
j
in
range
(
Nt
+
1
):
l
=
L
*
np
.
exp
(
alpha
*
times
[
j
])
if
alpha
==
0
:
beta
=
-
D
*
np
.
pi
**
2
*
times
[
j
]
/
L
**
2
else
:
beta
=
(
-
D
*
np
.
pi
**
2
/
(
2
*
alpha
*
L
**
2
))
*
(
1
-
np
.
exp
(
-
2
*
alpha
*
times
[
j
]))
c_exact
[
j
]
=
np
.
exp
(
-
alpha
*
times
[
j
])
*
(
1
+
0.2
*
np
.
cos
(
np
.
pi
*
x
[
j
]
/
l
)
*
np
.
exp
(
beta
))
# numerical solution
c
=
advection_diffusion
(
Nx
,
L
,
Nt
,
tmax
,
D
,
alpha
)[
0
]
fig
,
(
ax
,
ax1
)
=
plt
.
subplots
(
2
,
1
,
figsize
=
(
8
,
6
))
ax
.
set_xlabel
(
r'$x$'
)
ax
.
set_ylabel
(
r'$c(x,t)$'
)
ax
.
set_xlim
(
np
.
min
(
x
),
np
.
max
(
x
)
+
2
)
ax
.
set_ylim
(
min
(
np
.
min
(
c
),
np
.
min
(
c_exact
))
-
1
,
max
(
np
.
max
(
c
),
np
.
max
(
c_exact
))
+
1
)
cplot
,
=
ax
.
plot
(
x
[
0
],
c
[
0
],
'--'
,
label
=
'Numerical solution'
)
cexactplot
,
=
ax
.
plot
(
x
[
0
],
c_exact
[
0
],
label
=
'Exact solution'
)
error
=
np
.
abs
(
c
-
c_exact
)
print
(
'dt =
%6.3
f, max error =
%6.5
f'
%
(
tmax
/
Nt
,
np
.
max
(
error
)))
errorplot
,
=
ax1
.
plot
(
x
[
0
],
error
[
0
],
'bo'
,
mfc
=
'none'
)
ax1
.
set_ylabel
(
r'$|c(x,t) - c_{exact}(x,t)|$'
)
ax1
.
set_xlabel
(
'$x$'
)
ax1
.
set_xlim
(
np
.
min
(
x
),
np
.
max
(
x
)
+
2
)
ax1
.
set_ylim
([
np
.
min
(
error
)
-
1
,
np
.
max
(
error
)
+
1
])
def
update
(
value
):
ti
=
np
.
abs
(
times
-
value
)
.
argmin
()
cplot
.
set_xdata
(
x
[
ti
])
cplot
.
set_ydata
(
c
[
ti
])
cexactplot
.
set_xdata
(
x
[
ti
])
cexactplot
.
set_ydata
(
c_exact
[
ti
])
errorplot
.
set_xdata
(
x
[
ti
])
errorplot
.
set_ydata
(
error
[
ti
])
plt
.
draw
()
sax
=
plt
.
axes
([
0.1
,
0.92
,
0.7
,
0.02
])
slider
=
Slider
(
sax
,
r'$t/\tau$'
,
min
(
times
),
max
(
times
),
valinit
=
min
(
times
),
valfmt
=
'
%3.1
f'
,
fc
=
'#999999'
)
slider
.
drawon
=
False
slider
.
on_changed
(
update
)
ax
.
legend
(
loc
=
0
)
fig
,
ax2
=
plt
.
subplots
(
1
,
1
,
figsize
=
(
8
,
6
))
ax2
.
semilogy
(
times
,
c
[:,
0
],
label
=
'$c_{num}(0,t)$'
)
if
alpha
==
0
:
ax2
.
semilogy
(
times
,
1
+
0.2
*
np
.
exp
(
-
D
*
np
.
pi
**
2
*
times
/
L
**
2
),
label
=
'$c_{an}(0,t)$'
)
else
:
ax2
.
semilogy
(
times
,
np
.
exp
(
-
alpha
*
times
)
*
(
1
+
0.2
*
np
.
exp
(
-
D
*
(
np
.
pi
**
2
/
(
2
*
alpha
*
L
**
2
))
*
(
1
-
np
.
exp
(
-
2
*
alpha
*
times
)))),
label
=
'$c_{an}(0,t)$'
)
ax2
.
legend
()
plt
.
show
()
growing_domain/given_v_get_rho_c/1D_growth/linear_growth.py
0 → 100644
View file @
d00b7d81
import
dolfin
as
df
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
matplotlib.widgets
import
Slider
df
.
set_log_level
(
df
.
LogLevel
.
ERROR
)
df
.
parameters
[
'form_compiler'
][
'optimize'
]
=
True
# parameters
tmax
,
dt
,
L
,
dx
,
b
,
m
,
D
=
20
,
0.01
,
1
,
0.01
,
0.1
,
2
,
0.1
Nt
=
int
(
tmax
/
dt
)
Nx
=
int
(
L
/
dx
)
# mesh, function space, functions
mesh
=
df
.
IntervalMesh
(
Nx
,
0
,
L
)
function_space
=
df
.
FunctionSpace
(
mesh
,
'P'
,
1
)
c
,
tc
=
df
.
Function
(
function_space
),
df
.
TestFunction
(
function_space
)
# initial condition
c0
=
df
.
interpolate
(
df
.
Expression
(
'1 + 0.2*cos(m * pi * x[0]/L)'
,
pi
=
np
.
pi
,
L
=
L
,
m
=
m
,
degree
=
1
),
function_space
)
# arrays
times
=
np
.
linspace
(
0
,
tmax
,
Nt
+
1
)
x_array
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
x_array
[
0
]
=
mesh
.
coordinates
()[:,
0
]
c_array
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
c_array
[
0
]
=
c0
.
compute_vertex_values
(
mesh
)
# velocity
v
=
df
.
Expression
(
'b*x[0]/(L + b *t)'
,
b
=
b
,
L
=
L
,
t
=
0
,
degree
=
0
)
vh
=
df
.
project
(
v
,
function_space
)
# form
cform
=
(
df
.
inner
((
c
-
c0
)
/
dt
,
tc
)
+
D
*
df
.
inner
((
c
)
.
dx
(
0
),
(
tc
)
.
dx
(
0
))
+
df
.
inner
((
vh
*
c0
)
.
dx
(
0
),
tc
)
)
*
df
.
dx
# time stepping
for
i
in
range
(
1
,
Nt
+
1
):
v
.
t
=
times
[
i
]
vh
.
assign
(
df
.
project
(
v
,
function_space
))
df
.
solve
(
cform
==
0
,
c
)
c_array
[
i
]
=
c
.
compute_vertex_values
(
mesh
)
c0
.
assign
(
c
)
df
.
ALE
.
move
(
mesh
,
df
.
project
(
vh
*
dt
,
function_space
))
x_array
[
i
]
=
mesh
.
coordinates
()[:,
0
]
# exact solution
c_exact
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
for
j
in
range
(
0
,
Nt
+
1
):
l
=
L
+
b
*
times
[
j
]
c_exact
[
j
]
=
(
L
/
l
)
*
(
1
+
0.2
*
np
.
cos
(
m
*
np
.
pi
*
x_array
[
j
]
/
l
)
*
np
.
exp
(
-
m
**
2
*
np
.
pi
**
2
*
D
*
times
[
j
]
/
(
L
*
l
)))
# plotting
fig
,
ax
=
plt
.
subplots
(
1
,
1
,
figsize
=
(
8
,
6
))
ax
.
set_xlabel
(
r'$x$'
)
ax
.
set_ylabel
(
r'$c(x,t)$'
)
ax
.
set_xlim
(
np
.
min
(
x_array
),
np
.
max
(
x_array
))
ax
.
set_ylim
(
min
(
np
.
min
(
c_exact
),
np
.
min
(
c_array
)),
max
(
np
.
max
(
c_array
),
np
.
max
(
c_exact
)))
ax
.
grid
(
True
)
cplot
,
=
ax
.
plot
(
x_array
[
0
],
c_array
[
0
],
'--'
,
label
=
'Numerical solution'
)
c_exactplot
,
=
ax
.
plot
(
x_array
[
0
],
c_exact
[
0
],
label
=
'Exact solution'
)
def
update
(
value
):
ti
=
np
.
abs
(
times
-
value
)
.
argmin
()
cplot
.
set_xdata
(
x_array
[
ti
])
cplot
.
set_ydata
(
c_array
[
ti
])
c_exactplot
.
set_xdata
(
x_array
[
ti
])
c_exactplot
.
set_ydata
(
c_exact
[
ti
])
plt
.
draw
()
sax
=
plt
.
axes
([
0.1
,
0.92
,
0.7
,
0.02
])
slider
=
Slider
(
sax
,
r'$t/\tau$'
,
min
(
times
),
max
(
times
),
valinit
=
min
(
times
),
valfmt
=
'
%3.1
f'
,
fc
=
'#999999'
)
slider
.
drawon
=
False
slider
.
on_changed
(
update
)
ax
.
legend
(
loc
=
0
)
plt
.
show
()
\ No newline at end of file
growing_domain/given_v_get_rho_c/1D_growth/time_dependent_alpha_exp_growth.py.py
0 → 100644
View file @
d00b7d81
import
dolfin
as
df
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
matplotlib.widgets
import
Slider
import
progressbar
df
.
set_log_level
(
df
.
LogLevel
.
ERROR
)
df
.
parameters
[
'form_compiler'
][
'optimize'
]
=
True
def
advection_diffusion
(
Nx
,
L
,
Nt
,
tmax
,
D
,
tstop
,
m
):
# mesh, function space, function, test function
mesh
=
df
.
IntervalMesh
(
Nx
,
0
,
L
)
SFS
=
df
.
FunctionSpace
(
mesh
,
'P'
,
1
)
c
=
df
.
Function
(
SFS
)
tc
=
df
.
TestFunction
(
SFS
)
# x and t arrays
times
=
np
.
linspace
(
0
,
tmax
,
Nt
+
1
)
dt
=
times
[
1
]
-
times
[
0
]
# initial condition
c0
=
df
.
Function
(
SFS
)
c0
.
interpolate
(
df
.
Expression
(
'1 + 0.2 * cos(m * pi*x[0]/L)'
,
m
=
m
,
pi
=
np
.
pi
,
L
=
L
,
degree
=
1
))
# arrays
c_array
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
x_array
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
x_array
[
0
]
=
mesh
.
coordinates
()[:,
0
]
c_array
[
0
]
=
c0
.
compute_vertex_values
(
mesh
)
# velocity
u
=
df
.
Expression
(
'(t < tstop ? alpha0 : 0)*x[0]'
,
alpha0
=
alpha0
,
tstop
=
tstop
,
t
=
0
,
degree
=
0
)
uh
=
df
.
project
(
u
,
SFS
)
# form
cform
=
(
df
.
inner
((
c
-
c0
)
/
dt
,
tc
)
+
D
*
df
.
inner
(
df
.
nabla_grad
(
c
),
df
.
nabla_grad
(
tc
))
+
df
.
inner
((
uh
*
c
)
.
dx
(
0
),
tc
)
)
*
df
.
dx
# solve
for
i
in
progressbar
.
progressbar
(
range
(
1
,
Nt
+
1
)):
u
.
t
=
times
[
i
]
uh
.
assign
(
df
.
project
(
u
,
SFS
))
df
.
solve
(
cform
==
0
,
c
)
c_array
[
i
]
=
c
.
compute_vertex_values
(
mesh
)
c0
.
assign
(
c
)
df
.
ALE
.
move
(
mesh
,
df
.
project
(
uh
*
dt
,
SFS
))
x_array
[
i
]
=
mesh
.
coordinates
()[:,
0
]
return
c_array
,
x_array
# plot c(x,t) numerical and analytical for given dt
dx
,
L
,
dt
,
tmax
,
D
,
m
=
0.01
,
1
,
0.01
,
100
,
0.01
,
2
alpha0
,
tstop
=
0.01
,
3
Nx
=
int
(
L
/
dx
)
Nt
=
int
(
tmax
/
dt
)
times
=
np
.
linspace
(
0
,
tmax
,
Nt
+
1
)
# numerical solution
c
,
x
=
advection_diffusion
(
Nx
,
L
,
Nt
,
tmax
,
D
,
tstop
,
m
)
# analytical solution
c_exact
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
for
j
in
range
(
0
,
len
(
times
)):
if
times
[
j
]
<=
tstop
:
# diffusion-advection on moving domain with velocity alpha0*x
alpha
=
alpha0
l
=
L
*
np
.
exp
(
alpha
*
times
[
j
])
beta
=
(
-
D
*
m
**
2
*
np
.
pi
**
2
/
(
2
*
alpha
*
L
**
2
))
*
(
1
-
np
.
exp
(
-
2
*
alpha
*
times
[
j
]))
c_exact
[
j
]
=
np
.
exp
(
-
alpha
*
times
[
j
])
*
(
1
+
0.2
*
np
.
cos
(
m
*
np
.
pi
*
x
[
j
]
/
l
)
*
np
.
exp
(
beta
))
else
:
# diffusion on fixed domain of length L = L0*exp(alpha0 * tc) with initial condition to be the profile at tc
l
=
L
*
np
.
exp
(
alpha0
*
tstop
)
beta
=
-
D
*
m
**
2
*
np
.
pi
**
2
*
(
times
[
j
]
-
tstop
)
/
l
**
2
-
np
.
pi
**
2
*
D
*
m
**
2
/
(
2
*
L
**
2
*
alpha0
)
*
(
1
-
np
.
exp
(
-
2
*
alpha0
*
tstop
))
c_exact
[
j
]
=
np
.
exp
(
-
alpha0
*
tstop
)
*
(
1
+
0.2
*
np
.
exp
(
beta
)
*
np
.
cos
(
m
*
np
.
pi
*
x
[
j
]
/
l
))
fig
,
ax
=
plt
.
subplots
(
1
,
1
,
figsize
=
(
8
,
6
))
ax
.
set_xlabel
(
r'$x$'
)
ax
.
set_ylabel
(
r'$c(x,t)$'
)
ax
.
set_xlim
(
np
.
min
(
x
),
np
.
max
(
x
))
ax
.
set_ylim
(
min
(
np
.
min
(
c
),
np
.
min
(
c_exact
)),
max
(
np
.
max
(
c
),
np
.
max
(
c_exact
)))
ax
.
grid
(
True
)
cplot
,
=
ax
.
plot
(
x
[
0
],
c
[
0
],
'--'
,
label
=
'Numerical solution'
)
c_exactplot
,
=
ax
.
plot
(
x
[
0
],
c_exact
[
0
],
label
=
'Exact solution'
)
def
update
(
value
):
ti
=
np
.
abs
(
times
-
value
)
.
argmin
()
cplot
.
set_xdata
(
x
[
ti
])
cplot
.
set_ydata
(
c
[
ti
])
c_exactplot
.
set_xdata
(
x
[
ti
])
c_exactplot
.
set_ydata
(
c_exact
[
ti
])
plt
.
draw
()
sax
=
plt
.
axes
([
0.1
,
0.92
,
0.7
,
0.02
])
slider
=
Slider
(
sax
,
r'$t/\tau$'
,
min
(
times
),
max
(
times
),
valinit
=
min
(
times
),
valfmt
=
'
%3.1
f'
,
fc
=
'#999999'
)
slider
.
drawon
=
False
slider
.
on_changed
(
update
)
ax
.
legend
(
loc
=
0
)
plt
.
show
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment