Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
Jigyasa Watwani
/
growth-pattern-control
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Members
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit
335ecfbc
authored
Apr 27, 2022
by
Jigyasa Watwani
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added friction coefficient
parent
84ef4e00
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
11 additions
and
11 deletions
with_c_lsa.py
with_c_lsa.py
View file @
335ecfbc
...
...
@@ -3,10 +3,10 @@ import matplotlib.pyplot as plt
from
matplotlib.widgets
import
Slider
# real part of largest eigenvalue of STABILITY MATRIX
def
largest_real_eigval
(
q
,
K
=
1.0
,
lamda
=
1.5
,
eta
=
1
,
krho
=
10.0
,
rho0
=
1
,
c0
=
1.0
,
kc
=
1.0
,
Drho
=
1.0
,
Dc
=
1.0
):
A
=
np
.
asmatrix
([[
-
K
*
q
**
2
/
(
1
+
eta
*
q
**
2
),
1
j
*
c0
*
lamda
/
(
1
+
eta
*
q
**
2
),
1
j
*
rho0
*
lamda
/
(
1
+
eta
*
q
**
2
)],
[
1
j
*
q
**
3
*
rho0
*
K
/
(
1
+
eta
*
q
**
2
),
-
Drho
*
q
**
2
-
krho
+
q
**
2
*
c0
*
rho0
*
lamda
/
(
1
+
eta
*
q
**
2
),
q
**
2
*
rho0
**
2
*
lamda
/
(
1
+
eta
*
q
**
2
)],
[
1
j
*
q
**
3
*
c0
*
K
/
(
1
+
eta
*
q
**
2
),
q
**
2
*
c0
**
2
*
lamda
/
(
1
+
eta
*
q
**
2
),
-
kc
+
q
**
2
*
c0
*
rho0
*
lamda
/
(
1
+
eta
*
q
**
2
)
-
q
**
2
*
Dc
]])
def
largest_real_eigval
(
q
,
K
=
1.0
,
lamda
=
1.5
,
eta
=
1
,
krho
=
10.0
,
rho0
=
1
,
c0
=
1.0
,
kc
=
1.0
,
Drho
=
1.0
,
Dc
=
1.0
,
gamma
=
1.0
):
A
=
np
.
asmatrix
([[
-
K
*
q
**
2
/
(
gamma
+
eta
*
q
**
2
),
1
j
*
c0
*
q
*
lamda
/
(
gamma
+
eta
*
q
**
2
),
1
j
*
rho0
*
q
*
lamda
/
(
gamma
+
eta
*
q
**
2
)],
[
1
j
*
q
**
3
*
rho0
*
K
/
(
gamma
+
eta
*
q
**
2
),
-
Drho
*
q
**
2
-
krho
+
q
**
2
*
c0
*
rho0
*
lamda
/
(
gamma
+
eta
*
q
**
2
),
q
**
2
*
rho0
**
2
*
lamda
/
(
gamma
+
eta
*
q
**
2
)],
[
1
j
*
q
**
3
*
c0
*
K
/
(
gamma
+
eta
*
q
**
2
),
q
**
2
*
c0
**
2
*
lamda
/
(
gamma
+
eta
*
q
**
2
),
-
kc
+
q
**
2
*
c0
*
rho0
*
lamda
/
(
gamma
+
eta
*
q
**
2
)
-
q
**
2
*
Dc
]])
lamda
=
np
.
real
(
np
.
linalg
.
eigvals
(
A
))
return
lamda
.
max
()
...
...
@@ -19,15 +19,15 @@ ax.set_xlabel(r'$q$')
ax
.
set_ylabel
(
r'$Re[\, \lambda(q) \, ]_{\rm max}$'
)
ax
.
axhline
(
y
=
0
,
color
=
'black'
)
lamda0
=
3.
88
K0
=
0.94
krho0
=
2.81
eta0
=
3.
12
lamda0
=
3.
0
K0
=
1.0
krho0
=
3.0
eta0
=
3.
0
rho00
=
1.0
Dc0
=
1.
12
Dc0
=
1.
0
Drho0
=
0.0
kc0
=
1.
38
c00
=
2.12
kc0
=
1.
0
c00
=
1.0
lamda
=
np
.
array
([
largest_real_eigval
(
q
,
K
=
K0
,
lamda
=
lamda0
,
eta
=
eta0
,
krho
=
krho0
,
rho0
=
rho00
,
c0
=
c00
,
kc
=
kc0
,
Drho
=
Drho0
,
Dc
=
Dc0
)
for
q
in
kyu
])
lambda_plot
,
=
ax
.
plot
(
kyu
,
lamda
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment