Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
Jigyasa Watwani
/
growth-pattern-control
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Members
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit
2bd5f0fb
authored
Dec 22, 2022
by
Jigyasa Watwani
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
test for diffusion on fixed domain
parent
3d13530e
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
67 additions
and
0 deletions
euler_error/diffusion_fixed_domain_solution.py
euler_error/diffusion_fixed_domain_solution.py
0 → 100644
View file @
2bd5f0fb
import
dolfin
as
df
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
matplotlib.widgets
import
Slider
import
progressbar
df
.
set_log_level
(
df
.
LogLevel
.
ERROR
)
df
.
parameters
[
'form_compiler'
][
'optimize'
]
=
True
Nx
,
L
,
D
,
tmax
,
dt
=
32
,
1
,
0.1
,
0.25
,
0.25
/
400
Nt
=
int
(
tmax
/
dt
)
mesh
=
df
.
IntervalMesh
(
Nx
,
0
,
L
)
x
=
mesh
.
coordinates
()[:,
0
]
times
=
np
.
linspace
(
0
,
tmax
,
Nt
+
1
)
SFS
=
df
.
FunctionSpace
(
mesh
,
'P'
,
1
)
c
=
df
.
Function
(
SFS
)
tc
=
df
.
TestFunction
(
SFS
)
c0
=
df
.
Function
(
SFS
)
c0
.
interpolate
(
df
.
Expression
(
'1 + 0.1 * cos(2*pi*x[0]/L) + 0.2 * cos(3*pi*x[0]/L)'
,
pi
=
np
.
pi
,
L
=
L
,
degree
=
1
))
c_exact
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
for
i
in
range
(
Nt
+
1
):
c_exact
[
i
]
=
1
+
0.1
*
np
.
cos
(
2
*
np
.
pi
*
x
/
L
)
*
np
.
exp
(
-
4
*
np
.
pi
**
2
*
D
*
times
[
i
]
/
L
**
2
)
+
0.2
*
np
.
cos
(
3
*
np
.
pi
*
x
/
L
)
*
np
.
exp
(
-
9
*
np
.
pi
**
2
*
D
*
times
[
i
]
/
L
**
2
)
c_array
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
c_array
[
0
]
=
c0
.
compute_vertex_values
(
mesh
)
cform
=
(
df
.
inner
((
c
-
c0
)
/
dt
,
tc
)
+
D
*
df
.
inner
(
df
.
nabla_grad
(
c
),
df
.
nabla_grad
(
tc
)))
*
df
.
dx
for
i
in
progressbar
.
progressbar
(
range
(
1
,
Nt
+
1
)):
df
.
solve
(
cform
==
0
,
c
)
c0
.
assign
(
c
)
c_array
[
i
]
=
c0
.
compute_vertex_values
(
mesh
)
fig
,
(
ax
,
ax1
)
=
plt
.
subplots
(
2
,
1
)
fig
.
suptitle
(
r'$N_x =
%
d, \Delta t =
%4.3
f$'
%
(
Nx
,
dt
))
cplot
,
=
ax
.
plot
(
x
,
c_array
[
0
],
'ro'
,
mfc
=
'none'
,
ms
=
6
,
label
=
'Numerics'
)
ceplot
,
=
ax
.
plot
(
x
,
c_exact
[
0
],
label
=
'Exact'
)
ax
.
set_xlabel
(
r'$x$'
)
ax
.
set_ylabel
(
r'$c(x,t)$'
)
ax
.
legend
(
loc
=
1
)
error
=
np
.
abs
(
c_array
-
c_exact
)
print
(
'Max error at t=0.25 is'
,
np
.
max
(
error
[
-
1
]))
err_plot
,
=
ax1
.
plot
(
x
,
error
[
1
],
'bo'
,
mfc
=
'none'
,
ms
=
6
)
ax1
.
set_ylim
(
np
.
min
(
error
),
np
.
max
(
error
))
ax1
.
set_xlabel
(
r'$x$'
)
ax1
.
set_ylabel
(
r'$c(x,t)-c_{\rm exact}(x,t)$'
)
def
update
(
val
):
ti
=
(
abs
(
times
-
val
))
.
argmin
()
cplot
.
set_ydata
(
c_array
[
ti
])
ceplot
.
set_ydata
(
c_exact
[
ti
])
err_plot
.
set_ydata
(
error
[
ti
])
plt
.
draw
()
sax
=
plt
.
axes
([
0.1
,
0.92
,
0.7
,
0.025
])
sl
=
Slider
(
sax
,
't'
,
times
.
min
(),
times
.
max
(),
valinit
=
times
.
min
())
sl
.
on_changed
(
update
)
plt
.
show
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment