Commit 145aa42e by Jigyasa Watwani

exact solution for time-dependent alpha

parent 425e1732
Showing with 51 additions and 1 deletions
...@@ -101,7 +101,7 @@ Putting $\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - \ ...@@ -101,7 +101,7 @@ Putting $\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - \
\end{equation} \end{equation}
The last step follows from the requirement that neumann conditions are satified at all times. The last step follows from the requirement that neumann conditions are satified at all times.
\section{Exact solution for advection diffusion equation on a moving domain} \section{Exact solution for advection diffusion equation on a domain growing exponentially}
We checked if our numerical solution for the advection-diffusion equation on a moving domain matches the analytical expression in \cite{Simpson2015-xe} We checked if our numerical solution for the advection-diffusion equation on a moving domain matches the analytical expression in \cite{Simpson2015-xe}
\bibliographystyle{plain}. \bibliographystyle{plain}.
The equation we intend to solve is: The equation we intend to solve is:
...@@ -185,6 +185,56 @@ Putting in the initial condition, ...@@ -185,6 +185,56 @@ Putting in the initial condition,
\begin{equation} \begin{equation}
C(x,t) = \exp(-\alpha t)\left[1+ 0.2\cos\left(\frac{\pi x}{L_0} \exp(-\alpha t)\right)\exp\left(\frac{-\pi^2D}{2 \alpha L_0^2}(1-\exp(-2 \alpha t))\right)\right] C(x,t) = \exp(-\alpha t)\left[1+ 0.2\cos\left(\frac{\pi x}{L_0} \exp(-\alpha t)\right)\exp\left(\frac{-\pi^2D}{2 \alpha L_0^2}(1-\exp(-2 \alpha t))\right)\right]
\end{equation} \end{equation}
\section{Exact solution for advection diffusion equation on a domain growing exponentially till $t=t_c$}
In this case, the map is:
\begin{equation}
x(s,t)=
\begin{cases}
s \exp(\alpha t), \quad t \leq t_c \\
s \exp(\alpha t_c), \quad t>t_c
\end{cases}
\end{equation}
The velocity is:
\begin{equation}
v(x,t) =
\begin{cases}
\alpha x, \quad t \leq t_c \\
0, \quad t>t_c
\end{cases}
\end{equation}
The domain length is:
\begin{equation}
L(t) =
\begin{cases}
L_0 \exp(\alpha t), \quad t \leq t_c \\
L_0 \exp(\alpha t_c), \quad t>t_c
\end{cases}
\end{equation}
The solution for $t \leq t_c$ is the same as obtained in the previous section. For $t > t_c$, the problem is one of solving the diffusion equation on a fixed domain of length $L = L_0 \exp(\alpha t_c)$ with the initial condition to be:
\begin{equation} \label{ic}
c(x, t_c) = \exp(-\alpha t_c)\left[1+ 0.2\cos\left(\frac{\pi x}{L_0} \exp(-\alpha t_c)\right)\exp\left(\frac{-\pi^2D}{2 \alpha L_0^2}(1-\exp(-2 \alpha t_c))\right)\right]
\end{equation}
Going to the fourier domain, the diffusion equation is:
\begin{equation}
\frac{d c_k}{dt} = -k^2 c_k
\end{equation}
\begin{equation}
\implies c_k(t) = c_k (t_c) \exp[-k^2(t-t_c)]
\end{equation}
Now, $c_k(t_c)$ is just the Fourier transform of Eq(\ref{ic}). Thus,
\begin{equation}
c_k(t_c) = 2 \pi e^{-\alpha t_c} \left[\delta(k) + 0.1 e^{-\frac{D}{2 \alpha L_0^2} \pi^2 (1 - e^{-2 \alpha t_c})} \left[\delta(k - \pi/L) + \delta (k+ \pi/L)\right]\right]
\end{equation}
where $L = L_0 \exp(\alpha t_c)$
Thus,
\begin{equation}
c_k(t) = \exp\left[-k^2(t-t_c)\right] 2 \pi e^{-\alpha t_c} \left[\delta(k) + 0.1 e^{-\frac{D}{2 \alpha L_0^2} \pi^2 (1 - e^{-2 \alpha t_c})} \left[\delta(k - \pi/L) + \delta (k+ \pi/L)\right]\right]
\end{equation}
The final solution is the inverse fourier transform of this, viz,
\begin{equation}
c(x,t) = \exp(-\alpha t_c) \left[ 1 + 0.2 \cos\left(\frac{\pi x}{L}\right) \exp \left( -\frac{\pi^2 (t - t_c)}{L^2} - \frac{D \pi^2 (1 - e^{-2 \alpha t_c})}{2 \alpha L_0^2}\right) \right]
\end{equation}
where again $L = L_0 \exp(\alpha t_c)$
\chapter*{Appendix: Visco-elastic models} \chapter*{Appendix: Visco-elastic models}
As the name suggests, viscoelastic materials have an elastic component and a viscous component. For the elastic component, the stress $\sigma_e$ is related to the strain $\epsilon_e$ as: As the name suggests, viscoelastic materials have an elastic component and a viscous component. For the elastic component, the stress $\sigma_e$ is related to the strain $\epsilon_e$ as:
\begin{equation} \begin{equation}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or sign in to comment