Commit 0034bd0f by Jigyasa Watwani

alpha=1-theta function

parent 6f648932
Showing with 104 additions and 0 deletions
import dolfin as df
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
import progressbar
df.set_log_level(df.LogLevel.ERROR)
df.parameters['form_compiler']['optimize'] = True
def advection_diffusion(Nx, L, Nt, tmax, D):
# mesh, function space, function, test function
mesh = df.IntervalMesh(Nx, 0, L)
SFS = df.FunctionSpace(mesh, 'P', 1)
c = df.Function(SFS)
tc = df.TestFunction(SFS)
# x and t arrays
times = np.linspace(0, tmax, Nt+1)
dt = times[1] - times[0]
# initial condition
c0 = df.Function(SFS)
c0.interpolate(df.Expression('1 + 0.2 * cos(pi*x[0]/L)', pi=np.pi, L=L, degree=1))
# arrays
c_array = np.zeros((Nt+1, Nx+1))
x_array = np.zeros((Nt+1, Nx+1))
x_array[0] = mesh.coordinates()[:, 0]
c_array[0] = c0.compute_vertex_values(mesh)
# velocity
alpha = df.Expression('times < 5 ? 0.01 : 0.0', times = 0, degree=0)
v = df.Expression('alpha*x[0]', alpha=alpha, degree=1)
u = df.interpolate(v, SFS)
# form
cform = (df.inner((c - c0)/dt, tc)
+ D * df.inner(df.nabla_grad(c), df.nabla_grad(tc))
+ df.inner((u*c).dx(0), tc) )* df.dx
# solve
for i in progressbar.progressbar(range(1, Nt+1)):
alpha.times = times[i]
df.solve(cform == 0, c)
c_array[i] = c.compute_vertex_values(mesh)
c0.assign(c)
df.ALE.move(mesh, df.Expression('v*dt', v=v, dt=dt, degree=1))
x_array[i] = mesh.coordinates()[:,0]
return c_array, x_array
# plot c(x,t) numerical and analytical for given dt
dx, L, dt, tmax, D = 0.001, 1, 0.001, 20, 0.01
alpha0, tc = 0.01, 5
Nx = int(L/dx)
Nt = int(tmax/dt)
times = np.linspace(0, tmax, Nt+1)
x = advection_diffusion(Nx, L, Nt, tmax, D)[1]
# numerical solution
c = advection_diffusion(Nx, L, Nt, tmax, D)[0]
# analytical solution
c_exact = np.zeros((Nt+1, Nx+1))
for j in range(0, len(times)):
if times[j] <= tc:
alpha = alpha0
l = L * np.exp(alpha * times[j])
beta = (-D * np.pi**2 /(2 *alpha * L**2)) * (1 - np.exp(-2 * alpha * times[j]))
c_exact[j] = np.exp(-alpha * times[j])* (1 + 0.2 * np.cos(np.pi*x[j]/l) * np.exp(beta))
else:
l = L * np.exp(alpha0 * tc)
beta = -D * np.pi**2*times[j]/l**2 - np.pi**2 * D/(2*l**2*alpha0) * (1 - np.exp(-2 *alpha0 *tc))
c_exact[j] = np.exp(-alpha0 * tc) * (1 + 0.2 * np.exp(beta) * np.cos(np.pi * x[j]/l))
fig, ax = plt.subplots(1,1,figsize=(8,6))
ax.set_xlabel(r'$x$')
ax.set_ylabel(r'$c(x,t)$')
ax.set_xlim(np.min(x), np.max(x)+2)
ax.set_ylim(np.min(c)-1, np.max(c)+1)
cplot, = ax.plot(x[0], c[0], '--',label = 'Numerical solution')
c_exactplot, = ax.plot(x[0], c_exact[0],label = 'Exact solution')
def update(value):
ti = np.abs(times-value).argmin()
cplot.set_xdata(x[ti])
cplot.set_ydata(c[ti])
c_exactplot.set_xdata(x[ti])
c_exactplot.set_ydata(c_exact[ti])
plt.draw()
sax = plt.axes([0.1, 0.92, 0.7, 0.02])
slider = Slider(sax, r'$t/\tau$', min(times), max(times),
valinit=min(times), valfmt='%3.1f',
fc='#999999')
slider.drawon = False
slider.on_changed(update)
ax.legend(loc=0)
plt.show()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or sign in to comment