where $$M^{ij}=\frac{1}{c^2}\int\rho\left(t,\vec{x}\right) x^i x^j d^3\vec{x}$$
\end{itemize}
\begin{enumerate}
\item\label{p1-5} Consider GW travelling in a generic direction $\hat{n}$ where $n_i =\left(sin\theta cos\phi,sin\theta sin\phi, cos\theta\right)$. Compute the angular distribution for the quadrupole radiation (i.e $h_{+}(\theta,\phi)$ and $h_{\times}(\theta,\phi)$) for given ${M_{ij}}$
\item Consider a binary system of mass $m_1$ and $m_2$, and assume circular motion in relative coordinate (neglect back radiation on motion due to GW). Compute $h_+$ and $h_{\times}$ (use result of \ref{p1-5}), and radiated power. Plot the angular distribution of the radiated power.
\item Consider a mass $m$ is performing simple harmonic motion along $z$ axis. Compute $h_{+}$ and $h_{\times}$ and power radiated. Plot the angular distribution of emitted power.