Taking~$A \equiv-(1+2H)$,~$B \equiv4H$ and~$C \equiv(1-2H)$, we get~$AC - B^2=-(1+2H)(1-2H)-(4H)^2=-1 < 0$ for all~$r$. Therefore, this equation iss hyperbolic both inside and outside the horizon at~$2H =1$, or~$r =2M$.
Let,~$\p_t \Phi\equiv-\Pi$ and~$\p_r \Phi\equiv\Psi$. This gives the following system of eqations
Eigenvalues of this matrix are~$0$,~$\frac{4H \pm\sqrt{16 H^2-4(1-4H^2)}}{2(1+2H)}$, or~$0$,~$-1$ and~$\frac{1-2H}{1+2H}$.
\item Consider the equation $a u_{xx}+2b u_{xy}+ c _{yy}= f(u, \p u, x,y)$, where $u = u(x,y)$ and the subscripts denote partial derivatives. For what value of $a$, $b$ and $c$ is this equation elliptic, parabolic and elliptic PDEs, give reason: (a). $a = b = c =1$, (b). $a = c =1$, $b =0$, (c) $a =1$, $b =0$, $c =-1$. (3 marks) \\