Taking~$A \equiv-(1+2H)$,~$B \equiv4H$ and~$C \equiv(1-2H)$, we get~$AC - B^2=-(1+2H)(1-2H)-(4H)^2=-1 < 0$ for all~$r$. Therefore, this equation iss hyperbolic both inside and outside the horizon at~$2H =1$, or~$r =2M$.
Taking~$A \equiv-(1+2H)$,~$B \equiv4H$ and~$C \equiv(1-2H)$, we get~$AC - B^2=-(1+2H)(1-2H)-(4H)^2=-1 < 0$ for all~$r$. Therefore, this equation is hyperbolic both inside and outside the horizon at~$2H =1$, or~$r =2M$.
Let,~$\p_t \Phi\equiv-\Pi$ and~$\p_r \Phi\equiv\Psi$. This gives the following system of eqations
Eigenvalues of this matrix are~$0$,~$\frac{-4H \pm\sqrt{16 H^2+4(1-4H^2)}}{2(1+2H)}$, or~$0$,~$-1$ and~$\frac{1-2H}{1+2H}$, and so the nontrivial characteristic speeds are~$c_1=-1$ and~$c_2=\frac{1-2H}{1+2H}$.
A radial null geodesic in the Kerr-Schild metric given above is given by~$-(1-2H) dt^2+4 H dt dr +(1+2H) dr^2=0$, or~$-(1-2H)+4 H u +(1+2H) u^2=0$, where~$u \equiv dr/dt$. Solutions of this quadratic equation are the characteristic speeds in Kerr-Schild coordinates~$u =-1, \frac{1-2H}{1+2H}$. Integrating~$dr/dt =-1$ gives~$t + r = constant$.
t = \int\frac{r+2M}{r-2M} dr + const = r + 4M \int\frac{dr}{r-2M} + const = r + 4M \ln |r - 2M| + const \, ,
\end{align*}
Eigenvalues of this matrix are~$0$,~$\frac{4H \pm\sqrt{16 H^2-4(1-4H^2)}}{2(1+2H)}$, or~$0$,~$-1$ and~$\frac{1-2H}{1+2H}$.
which gives~$t - r =4M \ln |r -2M| + constant$. The name outgoing is misleading as both characteristic speeds are negative for~$r < 2M$.~$\blacksquare$
\item Consider the equation $a u_{xx}+2b u_{xy}+ c _{yy}= f(u, \p u, x,y)$, where $u = u(x,y)$ and the subscripts denote partial derivatives. For what value of $a$, $b$ and $c$ is this equation elliptic, parabolic and elliptic PDEs, give reason: (a). $a = b = c =1$, (b). $a = c =1$, $b =0$, (c) $a =1$, $b =0$, $c =-1$. (3 marks) \\