Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
Jigyasa Watwani
/
growth-pattern-control
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Members
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit
f83b6210
authored
Sep 08, 2022
by
Jigyasa Watwani
Browse files
Options
Browse Files
Download
Plain Diff
diffusion advection moving domain
parents
f2e1eb75
daa0a975
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
68 additions
and
0 deletions
diffusion/diffusion_moving_domain.py
diffusion/diffusion_moving_domain.py
0 → 100644
View file @
f83b6210
import
dolfin
as
df
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
matplotlib.widgets
import
Slider
import
progressbar
df
.
set_log_level
(
df
.
LogLevel
.
ERROR
)
df
.
parameters
[
'form_compiler'
][
'optimize'
]
=
True
Nx
,
L
,
D
,
tmax
,
dt
=
32
,
1.0
,
0.1
,
2.0
,
0.05
Nt
=
int
(
tmax
/
dt
)
mesh
=
df
.
IntervalMesh
(
Nx
,
0
,
L
)
x
=
mesh
.
coordinates
()[:,
0
]
times
=
np
.
linspace
(
0
,
tmax
,
Nt
+
1
)
SFS
=
df
.
FunctionSpace
(
mesh
,
'P'
,
1
)
c
=
df
.
Function
(
SFS
)
tc
=
df
.
TestFunction
(
SFS
)
c0
=
df
.
Function
(
SFS
)
c0
.
interpolate
(
df
.
Expression
(
'1 + 0.1 * cos(2*pi*x[0]/L)'
,
pi
=
np
.
pi
,
L
=
L
,
degree
=
1
))
c_exact
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
for
i
in
range
(
Nt
+
1
):
c_exact
[
i
]
=
1
+
0.1
*
np
.
cos
(
2
*
np
.
pi
*
x
/
L
)
*
np
.
exp
(
-
4
*
np
.
pi
**
2
*
D
*
times
[
i
]
/
L
**
2
)
c_array
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
c_array
[
0
]
=
c0
.
compute_vertex_values
(
mesh
)
cform
=
(
df
.
inner
((
c
-
c0
)
/
dt
,
tc
)
+
D
*
df
.
inner
(
df
.
nabla_grad
(
c
),
df
.
nabla_grad
(
tc
)))
*
df
.
dx
for
i
in
progressbar
.
progressbar
(
range
(
1
,
Nt
+
1
)):
df
.
solve
(
cform
==
0
,
c
)
c0
.
assign
(
c
)
c_array
[
i
]
=
c0
.
compute_vertex_values
(
mesh
)
fig
,
(
ax
,
ax1
)
=
plt
.
subplots
(
2
,
1
)
fig
.
suptitle
(
r'$N_x =
%
d, \Delta t =
%4.3
f$'
%
(
Nx
,
dt
))
cplot
,
=
ax
.
plot
(
x
,
c_array
[
0
],
'ro'
,
mfc
=
'none'
,
ms
=
6
,
label
=
'Numerics'
)
ceplot
,
=
ax
.
plot
(
x
,
c_exact
[
0
],
label
=
'Exact'
)
ax
.
set_xlabel
(
r'$x$'
)
ax
.
set_ylabel
(
r'$c(x,t)$'
)
ax
.
legend
(
loc
=
1
)
error
=
c_array
-
c_exact
print
(
np
.
max
(
error
))
err_plot
,
=
ax1
.
plot
(
x
,
error
[
0
],
'bo'
,
mfc
=
'none'
,
ms
=
6
)
ax1
.
set_ylim
(
np
.
min
(
error
),
np
.
max
(
error
))
ax1
.
set_xlabel
(
r'$x$'
)
ax1
.
set_ylabel
(
r'$c(x,t)-c_{\rm exact}(x,t)$'
)
def
update
(
val
):
ti
=
(
abs
(
times
-
val
))
.
argmin
()
cplot
.
set_ydata
(
c_array
[
ti
])
ceplot
.
set_ydata
(
c_exact
[
ti
])
err_plot
.
set_ydata
(
error
[
ti
])
plt
.
draw
()
sax
=
plt
.
axes
([
0.1
,
0.92
,
0.7
,
0.025
])
sl
=
Slider
(
sax
,
't'
,
times
.
min
(),
times
.
max
(),
valinit
=
times
.
min
())
sl
.
on_changed
(
update
)
plt
.
show
()
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment