Setup for generic calculation in n=1,2,3 dimensions and for none/exponential/linear growth

parent 6726164f
Showing with 147 additions and 196 deletions
\documentclass[11pt, reqno]{report}
\usepackage{amssymb, amsmath, datetime, xcolor, soul, graphicx}
\documentclass[11pt, reqno]{amsart}
\usepackage{amssymb,amsmath,datetime,soul,graphicx,geometry}
\usepackage[dvipsnames]{xcolor}
\linespread{1.25}
\usepackage[colorlinks=true, citecolor=blue, urlcolor=blue]{hyperref}
\usepackage[colorlinks=true,citecolor=RoyalBlue,urlcolor=RoyalBlue]{hyperref}
% shortcuts
\newcommand{\vect}[1]{\boldsymbol{#1}}
......@@ -13,243 +14,193 @@
\begin{document}
\title{Diffusion on a growing domains}
\title{Diffusion in an isotropically growing domains}
\date{\currenttime, \today}
\maketitle
Largely following \href{https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117949}{Exact Solutions of Linear Reaction-Diffusion Processes on a Uniformly Growing Domain: Criteria for Successful Colonization}, M J Simpson, PLoS One (2015).
\section{Diffusion on a growing disk}
\subsection{Kinematics}
We consider a linear reaction-diffusion process on a growing disk labelled by points $\vect{r} = (r, \varphi)$ with $0 < r < R(t)$ and $0 \leq \varphi < 2\pi$ where $R(t)$ is the increasing radius of the domain. Domain growth is associated with a \emph{radial} velocity field $\vect{v} = v(r,t) \, \uvec{r}$ which causes points on a circle of radius $r$ to move to a circle of radius $r + v(r,t) \, \tau $ in a short time $\tau$. Thus,
\eqn{r \to r^{\prime} = r + v(r, t)\tau.\label{eq:rprime}}
And, similarly,
\eqn{r + \Delta r \to r^{\prime} + \Delta r^{\prime} = r + \Delta r + v(r + \Delta r, t)\tau .\label{eq:rprimeplusdeltarprime}}
Subtracting Eq(\ref{eq:rprime}) from Eq(\ref{eq:rprimeplusdeltarprime}),
\begin{equation}
\begin{split}
\Delta r^{\prime} &= \Delta r + \tau[v(r + \Delta r, t) - v(r,t)] \\
&\approx \Delta r \left( 1 + \tau \frac{\partial v}{\partial r}\right)
\end{split}
\end{equation}
Integrating both sides,
\eq{
R^{\prime}(t) = R(t) + \tau \int_0^{R(t)} \frac{\partial v}{\partial r} dr
\section{Kinematics}
We consider a linear reaction-diffusion process on a growing $n-$dimensional domain labelled by points $\vect{r} = (r, \uvec{n})$ where $0 < r < R(t)$ with $R(t)$ is the increasing radius of the domain and $\uvec{n}$ is a unit-vector indicating a direction ($\uvec{n}$ only exists for $n \geq 2$). Domain growth is associated with a \emph{radial} velocity field $\vect{v} = v(r,t) \, \uvec{r}$ which causes points at a distance $r$ from the origin to move to a distance $r + v(r,t) \, \Delta t $ in a short time $\Delta t$. Thus points at distances $r$ and $r + \Delta r$, respectively, move to
\eqn{r \to r^{\prime} &= r + v(r, t) \;\tau,
\\
r + \Delta r \to r^{\prime} + \Delta r^{\prime} &= r + \Delta r + v(r + \Delta r, t) \; \Delta t.}
Thus
\eqn{
\Delta r^{\prime} = \Delta r + \Delta t \; \big[ v(r + \Delta r, t) - v(r,t) \big]
\approx
\Delta r \left( 1 + \Delta t \frac{\partial v}{\partial r}\right)
}
or
implying
\eqn{
R^{\prime}(t) = R(t) + \Delta t \int_0^{R(t)} \frac{\partial v}{\partial r} dr
\qquad
\implies
\qquad
\frac{dR(t)}{dt} = \int_0^{R(t)} \frac{\partial v}{\partial r} dr
.
\label{eq:growing_radius}
}
We consider uniform growth, i.e., $\partial_r v$ is independent of $r$ but potentially depends on time $t$, so that we have $\partial_r v = \sigma(t)$. Combining this with \eqref{eq:growing_radius} gives
We consider uniform growth, i.e., $\partial_r v \equiv \sigma(t)$ is independent of $r$ but could potentially depend on time $t$. Thus
\eqn{
\frac{\partial v}{\partial r} = \sigma(t) = \frac{1}{R(t)} \frac{dR(t)}{dt}.
\sigma(t) = \frac{1}{R(t)} \frac{dR(t)}{dt}.
\label{eq:growth_rate}
}
Assuming that the circular domain elongates with its center fixed, i.e., $v(0,t) = 0$, integrating \eqref{eq:growth_rate} gives
We impose the boundary condition $v(0,t) = 0$ using which, on integrating \eqref{eq:growth_rate}, we find
\eqn{
v(r,t) = \frac{r}{R(t)} \frac{dR(t)}{dt}.
v(r,t) = \frac{r}{R(t)} \frac{dR(t)}{dt} = \sigma(t) \; r.
}
\subsection{Mass conservation}
\section{Mass conservation}
We now consider the conservation of a mass density $C(\vect{r}, t)$, assuming that it evolves according to a linear reaction-diffusion mechanism. The associated conservation statement on the growing domain can be written as
\eqn{
\partial_t C = D \nabla^2 C - \nabla \cdot (\vect{v} C) + k \, C,
\label{eq:general_reaction_diffusion}
}
where $D>0$ and $k$ are the diffusion constant and reaction rate respectively.
We assume azimuthal symmetry $C(\vect{r}, t) = C(r, t)$, i.e., the dynamics is independent of $\varphi$. Then
where $D>0$ and $k$ are the diffusion constant and reaction rate respectively. Assuming a solution that only depends on the growth direction, i.e., $C(\vect{r}, t) = C(r, t)$, we get
\eqn{
\frac{\partial C}{\partial t} = D \, \frac{1}{r} \, \frac{\partial}{\partial r} \left(r \frac{\partial C}{\partial r} \right) - \frac{1}{r} \, \frac{\partial (r v C)}{\partial r} + k\,C,
\label{eq:azimuthal_symmetry}
\frac{\partial C}{\partial t} = \frac{D}{r^{n-1}} \, \frac{\partial}{\partial r} \left(r^{n-1} \frac{\partial C}{\partial r} \right) - \frac{1}{r^{n-1}} \, \frac{\partial (r^{n-1} v C)}{\partial r} + k\,C,
\\
= \frac{D}{r^{n-1}} \, \frac{\partial}{\partial r} \left(r^{n-1} \frac{\partial C}{\partial r} \right) - \frac{\sigma(t)}{r^{n-1}} \, \frac{\partial (r^{n} C)}{\partial r} + k\,C.
}
and impose zero diffusive flux conditions $\partial_r C = 0$ at $r=0$ and at $r=R(t)$. With some given initial conditions $C(r, 0)$ our aim is to find the exact solution of \eqref{eq:azimuthal_symmetry}.
We impose zero diffusive flux conditions $\partial_r C = 0$ at $r=0$ and at $r=R(t)$. With some given initial conditions $C(r, 0)$ our aim is to find the exact solution of \eqref{eq:azimuthal_symmetry}.
\subsection{Exact solution}
\section{Rescaling}
We first transform the spatial variable to a fixed domain $\xi = \dfrac{r}{R(t)}$. Then
We first transform the spatial variable to a fixed domain:
\eqn{ r \to \xi = \frac{r}{R}.}
This leads to
\eqn{
\frac{\partial C}{\partial t} \to \frac{\partial C}{\partial t} - \frac{v}{R(t)} \frac{\partial C}{\partial \xi}
\frac{\partial}{\partial t} \to \frac{\partial}{\partial t} - \sigma \; \xi \frac{\partial}{\partial \xi},
\qquad \qquad
\frac{\partial}{\partial r} \to \frac{1}{R} \frac{\partial}{\partial \xi}
}
which implies
\eqn{
\frac{\partial C}{\partial r} \to \frac{1}{R(t)} \frac{\partial C}{\partial \xi}
\frac{\partial C}{\partial t} =
\frac{D }{\xi^{n-1} R^2} \, \frac{\partial}{\partial \xi} \left(\xi^{n-1} \frac{\partial C}{\partial \xi} \right) + (k - n \, \sigma) C.
}
Then Eq(\ref{eq:azimuthal_symmetry}) becomes:
\eqn{\frac{\partial C}{\partial t} = \frac{D}{\xi R^2(t)} \frac{\partial}{\partial \xi} \left( \xi \frac{\partial C}{\partial \xi} \right) + \left(k - 2 \sigma(t)\right) C}
We now transform the variable $t: t \to T = \int_0^t \frac{D}{R^2(s)} ds$, giving
\eqn{\frac{\partial C}{\partial T} = \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( \xi \frac{\partial C}{\partial \xi} \right) + \frac{R^2(t)}{D}\left(k - 2 \sigma(t) \right) C}
Finally, we express the second term on the RHS as a function of $T$ to write:
\eqn{\frac{\partial C}{\partial T} = \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( \xi \frac{\partial C}{\partial \xi} \right) + f(T) C}
The above equation can be solved easily by separation of variables. Writing $C(\xi, T) = u(\xi) w(T)$,
\eqn{\frac{1}{w} \frac{dw}{dt} = \frac{1}{u \xi} \frac{d}{d \xi} \left( \xi \frac{du}{d \xi} \right) + f(T)}
Thus,
\eqn{\frac{1}{w} \frac{dw}{dT} - f(T) = \frac{1}{u \xi} \frac{d}{d \xi} \left( \xi \frac{du}{d \xi} \right) = -n^2}
Solving the $w$ equation first:
\eqn{w(T) = w(0) \exp\left[-n^2 T + \int_0^T f(T^{\star}) dT^\star \right]}
The $u$ equation reads:
\eqn{\xi \frac{d^2 u}{d \xi^2} + \frac{du}{d \xi} + n^2 u \xi = 0}
This is the Bessel equation of zeroth order, having solutions
\eqn{u(\xi) = c_1 J_0 (\xi n) + c_2 yY_0 (\xi n)}
Thus, the exact solution in the $(\xi, T)$ coordinates is :
\eqn{C(\xi, T) = \left[ a_1 J_0 (\xi n) + a_2 Y_0 (\xi n)\right] \exp\left[-n^2 T + \int_0^T f(T^\star) dT^\star \right]}
Since we want the solution to be bounded at $\xi = 0$, we keep only the $J_0$ term:
\eqn{C(\xi, T) = a_1 J_0 (\xi n) \exp\left[-n^2 T + \int_0^T f(T^\star) dT^\star \right]}
If we had Dirichlet boundary conditions at $\xi = 1$, $n$ would be the solution of
\eqn{J_0 (n) = 0}
i.e $n$'s are the roots of the zeroth bessel function.
Thus, the most general solution is:
\eqn{C(\xi, T) = \sum_{n} a_n J_0(\eta_n \xi) \exp\left[-\eta_n^2 T + \int_0^T f(T^\star) dT^\star \right]
\label{general_sol}}
where $\eta_n$ is the $n$th root of the zeroth Bessel function for Dirichlet boundary conditions. \\$a_n$ is determined by the initial conditions. Let us take
\eqn{C(\xi, 0) = J_0(\eta_m \xi) = \sum_{n} a_n J_0(\eta_n \xi)}
where the last equality follows by putting $T=0$ in Eq(\ref{general_sol}). Now using the orthogonality relation
\eq{\int_0^a J_v \left( \eta_{\nu p}\frac{\xi}{a}\right)J_v \left( \eta_{\nu q}\frac{\xi}{a}\right) \xi d \xi = \frac{a^2}{2}[J_{\nu+1} (\eta_{\nu p})]^2 \delta_{pq}}
where $\eta_{\nu p}$ and $\eta_{\nu q}$ are the $p$th and $q$th roots of the $\nu$th bessel function, we get
\eqn{a_{n=m} = 1, a_{n \neq m} = 0}.
In summary, the solution to our problem for the initial condition $C(\xi, 0) = J_0(\eta_m \xi)$ where $\eta_m$ is the mth root of $j_0$ is:
\eqn{C(\xi, T) = J_0(\eta_{m} \xi) \exp \left[-\eta_m^2 T + \int_0^T f(T^\star)dT^\star \right]}.
\subsection{Specific examples}
\subsubsection*{No growth}
In this case, $R(t) = R, \sigma(t) = 0, f(T^\star) = R^2 k/D$.
This gives \eq{C(\xi, T) = J_0 (\eta_m \xi) e^{-\eta_m^2 T} e^{R^2 k T/D}}
Plugging in $T = D t/R^2 $ and $\xi = r/R$,
\eqn{C(r,t) = J_0 (\eta_m r/R) e^{-\frac{\eta_m^2 D t}{R^2}}e^{kt}}
\subsubsection{Exponential domain growth}
In this case, $R(t) = R_0 e^{\alpha t}, \sigma(t)=\alpha$
\eq{ T = \frac{D(1 - e^{-2 \alpha t})}{2 \alpha R_0^2}}
And \eq{f( T^\star) = \frac{R_0^2 (k - 2 \alpha)}{D - 2 \alpha R_0^2 T^{\star}}}
Then,
\eq{C(\xi, T) = J_0(\eta_m \xi) e^{-\eta_m^2 T} \left(\frac{D}{D - 2\alpha R_0^2 T}\right)^{(k-2\alpha)/2\alpha}}
and \eqn{C(r,t) = J_0\left(\eta_m \frac{r}{R(t)}\right) \exp\left( -\frac{\eta_m^2 D(1 - e^{-2 \alpha t})}{2 \alpha R_0^2}\right) e^{(k - 2\alpha)t}}
\subsubsection{Linear domain growth}
In this case, $R(t)=R_0 + bt, \sigma(t) = b/R(t)$.\\
Further, \eq{T = \frac{D t}{R(t) R_0}}, or,
\eq{t = \frac{R_0^2 T}{D - R_0 b T}}
And \eq{f(T^\star) = \frac{R_0}{(D - R_0 bT^\star)^2} (k D R_0 - 2 b D + 2bR_0T^\star)}
Then
\eq{C(\xi, T) = J_0(\eta_m \xi) e^{-\eta_m^2 T} e^{\frac{(kR_0^2 - 2b + 2 R_0)T}{D - R_0 bT}}\left(\frac{D - R_0 bT}{D}\right)^\frac{2 R_0}{b}}
\eqn{C(r, t) = J_0\left(\eta_{m} \frac{n r}{R(t)}\right)e^{-\frac{\eta_m^2 D t}{R(t) R_0}} \left(\frac{R_0}{R(t)}\right)^{2R_0/b} e^{kt} e^{\frac{2( R_0-b)t}{R_0^2}}}
\section{Diffusion in a growing sphere}
\subsection{Kinematics}
We consider a linear reaction-diffusion process on a growing sphere labelled by points $\vect{r} = (r, \theta, \varphi)$ with $0 < r < R(t)$, $0 \leq \varphi < 2\pi$ and $0 \leq \theta \leq \pi$ where $R(t)$ is the increasing radius of the domain. Domain growth is associated with a \emph{radial} velocity field $\vect{v} = v(r,t) \, \uvec{r}$ which causes points on the surface of the sphere of radius $r$ to move to a circle of radius $r + v(r,t) \, \tau $ in a short time $\tau$. Thus,
\eqn{r \to r^{\prime} = r + v(r, t)\tau.\label{eq:rprime}}
And, similarly,
\eqn{r + \Delta r \to r^{\prime} + \Delta r^{\prime} = r + \Delta r + v(r + \Delta r, t)\tau .\label{eq:rprimeplusdeltarprime}}
Subtracting Eq(\ref{eq:rprime}) from Eq(\ref{eq:rprimeplusdeltarprime}),
\begin{equation}
\begin{split}
\Delta r^{\prime} &= \Delta r + \tau[v(r + \Delta r, t) - v(r,t)] \\
&\approx \Delta r \left( 1 + \tau \frac{\partial v}{\partial r}\right)
\end{split}
\end{equation}
Integrating both sides,
\eq{
R^{\prime}(t) = R(t) + \tau \int_0^{R(t)} \frac{\partial v}{\partial r} dr
}
or
Next, we transform the variable:
\eqn{
\frac{dR(t)}{dt} = \int_0^{R(t)} \frac{\partial v}{\partial r} dr
.
\label{eq:growing_radius}
t \to \tau = \int_0^t ds \; \frac{D}{R^2(s)}.
}
We consider uniform growth, i.e., $\partial_r v$ is independent of $r$ but potentially depends on time $t$, so that we have $\partial_r v = \sigma(t)$. Combining this with \eqref{eq:growing_radius} gives
Then
\eqn{
\frac{\partial v}{\partial r} = \sigma(t) = \frac{1}{R(t)} \frac{dR(t)}{dt}.
\label{eq:growth_rate}
\frac{\partial C}{\partial \tau} =
\frac{1}{\xi^{n-1}} \, \frac{\partial}{\partial \xi} \left(\xi^{n-1} \frac{\partial C}{\partial \xi} \right) + f(\tau) C
\label{eq:nondim_eqn}
}
Assuming that the circular domain elongates with its center fixed, i.e., $v(0,t) = 0$, integrating \eqref{eq:growth_rate} gives
where
\eqn{
v(r,t) = \frac{r}{R(t)} \frac{dR(t)}{dt}.
f(\tau) = \frac{R(\tau)^2}{D} \big[k - n \, \sigma(\tau) \big].
}
\subsection{Mass conservation}
\section{Exact solutions}
We now consider the conservation of a mass density $C(\vect{r}, t)$, assuming that it evolves according to a linear reaction-diffusion mechanism. The associated conservation statement on the growing domain can be written as
We use separation of variables to solve \eqref{eq:nondim_eqn}. Writing $C(\xi, \tau) = u(\xi) \; w(\tau)$,
\eqn{\frac{1}{w} \frac{dw}{d\tau} - f(\tau)= \frac{1}{u \, \xi^{n-1}} \frac{d}{d \xi} \left( \xi^{n-1} \frac{du}{d \xi} \right).}
With $-\omega^2$ as a separation constant, we get
\eqn{
\partial_t C = D \nabla^2 C - \nabla \cdot (\vect{v} C) + k \, C,
\label{eq:general_reaction_diffusion}
\frac{dw}{d\tau} = \big[ f(\tau) - \omega^2 \big] w
\qquad
\implies
\qquad
w(\tau) = w(0) \exp\left[-\omega^2 \tau + \int_0^\tau ds\; f(s) \right],
}
where $D>0$ and $k$ are the diffusion constant and reaction rate respectively.
We assume azimuthal symmetry $C(\vect{r}, t) = C(r, t)$, i.e., the dynamics is independent of $\varphi$. Then
and
\eqn{
\frac{d^2 u}{d\xi^2} + \frac{(n-1)}{\xi} \frac{du}{d\xi} + \omega^2 u = 0.
\label{eq:u_eqn}
}
We need to find solutions of \eqref{eq:u_eqn} with the boundary conditions that $u'(\xi) = 0$ at both $\xi=0$ and $\xi=1$.
\begin{itemize}
\item When $n=1$, we get
\eqn{u'' + \omega^2 u = 0,}
and thus need $\omega=m\pi$ to satisfy the boundary conditions. The general solution is thus
\eqn{u(\xi, \tau) = \sum_{m=0}^{\infty} a_m \cos\left(m \pi \xi \right) \; \exp\left[-m^2 \pi^2 \tau + \int_0^\tau ds\; f(s) \right].}
%
\item When $n=2$, we get
\eqn{\xi \, u'' + u' + \omega^2 \, \xi \, u = 0,}
the solutions of which are the zeroth-order Bessel functions $J_0(\omega\xi)$ and $Y_0(\omega\xi)$. Requiring $u$ to be bounded at $\xi=0$, we neglect the $Y_0$ solution. Imposing the boundary condition
\eqn{\frac{dJ_0(z)}{dz}\bigg\vert_{z=\omega}=0 \qquad \implies J_1(\omega)=0,
\label{eq:bc_n2}}
determines the allowed values of $\omega$ as the zeroes of the 1st-order Bessel function. The general solution is thus
\eqn{u(\xi, \tau) = \sum_{\omega} a_{\omega} \, J_0(\omega \xi) \; \exp\left[-\omega^2 \tau + \int_0^\tau ds\; f(s) \right],}
where the summation is over those values of $\omega$ satisfying \eqref{eq:bc_n2}.
%
\item When $n=3$, we get
\eqn{\xi \, u'' + 2 \, u' + \omega^2 \, \xi \, u = 0,}
the solutions of which are the zeroth-order \emph{spherical} Bessel functions
\eqn{
j_0(z) = \frac{\sin z}{z},
\qquad \mathrm{and} \qquad
y_0(z) = -\frac{\cos z}{z}.}
Requiring $u$ to be bounded at $\xi=0$, we neglect the $y_0$ solution. Imposing the boundary condition
\eqn{\frac{dj_0(z)}{dz}\bigg\vert_{z=\omega}=0 \qquad \implies \qquad
\tan \omega = \omega,
\label{eq:bc_n3}}
determines the allowed values of $\omega$. The general solution is thus
\eqn{u(\xi, \tau) = \sum_{\omega} a_{\omega} \, \frac{\sin \omega \xi}{\omega \xi} \; \exp\left[-\omega^2 \tau + \int_0^\tau ds\; f(s) \right],}
where the summation is over those values of $\omega$ satisfying \eqref{eq:bc_n3}.
\end{itemize}
\section{Three cases}
\subsection{Non-growing domain}
With $R(t) = R_0$ in this case, we get
\eqn{\sigma(t)=0, \qquad \tau=\frac{Dt}{R_0^2}, \qquad f=\frac{R_0^2k}{D}.}
Hence $\tau \to\infty$ as $t\to\infty$. Thus
\begin{itemize}
%
\item $n=1$
\eqn{
\frac{\partial C}{\partial t} = D \, \frac{1}{r^2} \, \frac{\partial}{\partial r} \left(r^2 \frac{\partial C}{\partial r} \right) - \frac{1}{r^2} \, \frac{\partial (r^2 v C)}{\partial r} + k \, C,
\label{eq:azimuthal_symmetry}
C(r,t) = \sum_{m=0}^{\infty} a_m \cos\left(\frac{m \pi r}{R_0} \right) \; \exp\left(-\frac{m^2 \pi^2 D t}{R_0^2} + k t \right).
}
and impose zero diffusive flux conditions $\partial_r C = 0$ at $r=0$ and at $r=R(t)$. With some given initial conditions $C(r, 0)$ our aim is to find the exact solution of \eqref{eq:azimuthal_symmetry}.
%
\item $n=2$
\eqn{C(r, t) = \sum_{\omega} a_{\omega} \, J_0\left(\frac{\omega r}{R_0} \right) \; \; \exp\left(-\frac{\omega^2 D t}{R_0^2} + k t \right),
\qquad \mathrm{with} \quad J_1(\omega)=0.}
%
\item $n=3$
\eqn{C(r, t) = \sum_{\omega} a_{\omega} \, \frac{R_0}{\omega r} \; \sin \left(\frac{\omega r}{R_0}\right) \; \; \exp\left(-\frac{\omega^2 D t}{R_0^2} + k t \right),
\qquad \mathrm{with} \quad \tan \omega = \omega.}
\end{itemize}
\subsection{Exact solution}
\subsection{Exponential domain growth}
\hl{Should check from here onwards....}
We first transform the spatial variable to a fixed domain $\xi = \dfrac{r}{R(t)}$. Then
\eqn{
\frac{\partial C}{\partial t} \to \frac{\partial C}{\partial t} - \frac{v}{R(t)} \frac{\partial C}{\partial \xi}
}
\eqn{
\frac{\partial C}{\partial r} \to \frac{1}{R(t)} \frac{\partial C}{\partial \xi}
}
Then Eq(\ref{eq:azimuthal_symmetry}) becomes:
\eqn{\frac{\partial C}{\partial t} = \frac{D}{\xi^2 R^2(t)} \frac{\partial}{\partial \xi} \left( \xi^2 \frac{\partial C}{\partial \xi} \right) + \left(k - 3 \sigma(t)\right) C}
We now transform the variable $t: t \to T = \int_0^t \frac{D}{R^2(s)} ds$, giving
\eqn{\frac{\partial C}{\partial T} = \frac{1}{\xi^2} \frac{\partial}{\partial \xi} \left( \xi^2 \frac{\partial C}{\partial \xi} \right) + \frac{R^2(t)}{D}\left(k - 3 \sigma(t) \right) C}
Finally, we express the second term on the RHS as a function of $T$ to write:
\eqn{\frac{\partial C}{\partial T} = \frac{1}{\xi^2} \frac{\partial}{\partial \xi} \left( \xi^2 \frac{\partial C}{\partial \xi} \right) + f(T) C}
The above equation can be solved easily by separation of variables. Writing $C(\xi, T) = u(\xi) v(T)$,
\eqn{\frac{1}{v} \frac{dv}{dt} = \frac{1}{u \xi^2} \frac{d}{d \xi} \left( \xi^2 \frac{du}{d \xi} \right) + f(T)}
Thus,
\eqn{\frac{1}{v} \frac{dv}{dT} - f(T) = \frac{1}{u \xi^2} \frac{d}{d \xi} \left( \xi^2 \frac{du}{d \xi} \right) = -n^2}
Solving the $v$ equation first:
\eqn{v(T) = v(0) \exp\left[-n^2 T + \int_0^T f(T^{\star}) dT^\star \right]}
And the $u$ equation reads:
\eqn{\frac{d^2 u}{d \xi^2} + \frac{2}{\xi} \frac{du}{d \xi} + n^2 u = 0}
This is the Bessel equation of zeroth order, having solutions
\eqn{u(\xi) = c_1 j_0 (n \xi) + c_2 y_0 (n \xi)}
where $j_0, y_0$ are spherical bessel functions given by
\eq{j_0 (n \xi) = \frac{\sin(n \xi)}{n \xi}}
\eq{y_0 (n \xi) = -\frac{\cos(n \xi)}{n \xi}}
Thus, the exact solution in the $(\xi, T)$ coordinates is :
\eqn{C(\xi, T) = \left[ a_1 j_0 (n \xi) + a_2 y_0 (n \xi)\right] \exp\left[-n^2 T + \int_0^T f(T^\star) dT^\star \right]}
Since we want the solution to be bounded at $\xi = 0$, we keep only the $j_0$ term:
\eqn{C(\xi, T) = a_1 j_0 (n \xi) \exp\left[-n^2 T + \int_0^T f(T^\star) dT^\star \right]}
If we have Dirichlet boundary conditions at $\xi =0, 1$ then $n$ can be determined to be the solution of $j_0(n) = 0$, i.e.
\eq{n = m \pi, m \in \mathbb{Z}}
Thus, the most general solution is:
\eq{C(\xi, T) = \sum_{m} a_m j_0(m \pi \xi) \exp\left[-(m \pi)^2 T + \int_0^T f(T^\star) dT^\star \right]}
We now determine $a_m$ by the initial conditions. Let us take
\eqn{C(\xi, 0) = j_0(p \pi \xi) = \sum_m a_m j_0(m \pi \xi)}
Using the orthogonality relation
\eqn{\int_0^a j_{\nu}\left(\eta_{\nu p}\frac{\xi}{a}\right) j_{\nu}\left(\eta_{\nu q}\frac{\xi}{a}\right) \xi^2 d \xi = \frac{a^3}{2} [j_{\nu + 1}(\eta_{\nu p})]^2 \delta_{pq}}
where $\eta_{\nu p}$ and $\eta_{\nu q}$ are the $p$th and $q$th roots of the $\nu$th bessel function, we get
\eqn{a_{m=p}=1, a_{m \neq p} = 0}
And thus the solution for initial condition $C(\xi, 0) = j_0(p \pi \xi)$ and Dirichlet boundaries at $\xi = 0,1$ is:
\eqn{C(\xi, T) = j_0(p \pi \xi) \exp\left[-(p \pi)^2 T + \int_0^T f(T^\star) dT^\star\right]}
\subsection{Specific examples}
\subsubsection*{No growth}
In this case, $R(t) = R, \sigma(t) = 0, f(T^\star) = R^2 k/D$.
This gives \eq{C(\xi, T) = j_0(p \pi \xi) e^{-p^2 \pi^2 T} e^{R^2 k T/D}}
Plugging in $T = D t/R^2 $ and $\xi = r/R$,
\eqn{C(r,t) = j_0\left(p \pi \frac{r}{R(t)}\right) e^{-\frac{p^2 \pi^2 D t}{R^2}}e^{kt}}
\subsubsection*{Exponential domain growth}
In this case, $R(t) = R_0 e^{\alpha t}, \sigma(t)=\alpha$
\eq{ T = \frac{D(1 - e^{-2 \alpha t})}{2 \alpha R_0^2}}
And \eq{f( T^\star) = \frac{R_0^2 (k - 3 \alpha)}{D - 2 \alpha R_0^2 T^{\star}}}
Then,
\eq{C(\xi, T) = j_0(p \pi \xi) e^{-(p \pi)^2 T} \left(\frac{D}{D - 2 \alpha R_0^2 T}\right)^{(k-3\alpha)/2\alpha}}
and \eqn{C(r,t) = j_0\left(p \pi \frac{r}{R(t)}\right) \exp\left[-\frac{(p \pi)^2 D(1 - e^{-2 \alpha t})}{2 \alpha R_0^2} \right] e^{(k-3\alpha)t}}
\subsubsection*{Linear domain growth}
In this case, $R(t)=R_0 + bt, \sigma(t) = b/R(t)$.\\
Further, \eq{T = \frac{D t}{R(t) R_0}}, or,
\eq{t = \frac{R_0^2 T}{D - R_0 b T}}
And \eq{f(T^\star) = \frac{R_0}{(D - R_0 bT^\star)^2} (k D R_0 - 3 b D + 3bR_0T^\star)}
Then
\eq{C(\xi, T) = j_0(p \pi \xi) e^{-p^2 \pi^2 T} e^{\frac{(k R_0 + 3 - 3b) R_0 T}{D - R_0 b T}}\left(\frac{D - R_0 b T}{D}\right)^{3/b}}
\eqn{C(r, t) = \left(\frac{R_0}{R(t)} \right)^{3/b} j_0\left(\frac{p \pi r}{R(t)}\right)e^{-\frac{p^2 \pi^2 D t}{R(t) R_0}} e^{kt} e^{\frac{3(1-b)t}{R_0}} }
\end{document}
With $R(t) = R_0 e^{\alpha t}$ in this case, we get,
\eqn{\sigma(t)=\alpha, \qquad \tau=\frac{D \; (1-e^{-2\alpha t})}{2\alpha R_0^2} , \qquad f= \frac{R_0^2 \; (k-n\alpha) \; e^{2\alpha t}}{D} .}
Hence $\tau \to D/(2\alpha R_0^2)$ as $t\to\infty$. Thus
\begin{itemize}
%
\item $n=1$
%
\item $n=2$
%
\item $n=3$
\end{itemize}
\subsection{Linear domain growth}
With $R(t) = R_0 + \alpha t$ in this case, we get
\eqn{\sigma(t) = \frac{\alpha}{R_0 + \alpha t}, \qquad\tau=\frac{D \; t}{R_0 (R_0 + \alpha t)} , \qquad f= \frac{(R_0 + \alpha t)^2}{D} \; \left(k-\frac{n\alpha}{R_0 + \alpha t} \right).}
Hence $\tau \to D/(\alpha R_0)$ as $t\to\infty$. Thus
\begin{itemize}
%
\item $n=1$
%
\item $n=2$
%
\item $n=3$
\end{itemize}
\end{document}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or sign in to comment