Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
Jigyasa Watwani
/
growth-pattern-control
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Members
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit
5dd9165a
authored
Oct 19, 2022
by
Jigyasa Watwani
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
time dependent alpha solution for mth mode cosine initial condition
parent
d635cac0
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
8 additions
and
8 deletions
thesis_notes.tex
thesis_notes.tex
View file @
5dd9165a
...
...
@@ -181,9 +181,9 @@ This is exactly the same as Eq(11) in the reference with $f(T^\star)=\alpha L_0^
C(x,t) =
\sum
_
n a
_
n
\cos\left
(
\frac
{
n
\pi
x
}{
L(t)
}
\right
)
\exp\left
(
\frac
{
-n
^
2
\pi
^
2 D(1-
\exp
(-2
\alpha
t))
}{
2
\alpha
L
_
0
^
2
}
\right
)
\exp
(-
\alpha
t)
\end{equation}
This matches the result (13) of the paper.
Putting in the initial condition
,
Putting in the initial condition
$
C
(
x,
0
)
=
1
+
0
.
2
\cos\left
(
\frac
{
m
\pi
x
}{
L
_
0
}
\right
)
$
\begin{equation}
C(x,t) =
\exp
(-
\alpha
t)
\left
[1+ 0.2\cos\left(\frac{
\pi x}{L_0} \exp(-\alpha t)\right)\exp\left(\frac{-
\pi^2D}{2 \alpha L_0^2}(1-\exp(-2 \alpha t))\right)\right]
C(x,t) =
\exp
(-
\alpha
t)
\left
[1+ 0.2\cos\left(\frac{
m \pi x}{L_0} \exp(-\alpha t)\right)\exp\left(\frac{-m^2
\pi^2D}{2 \alpha L_0^2}(1-\exp(-2 \alpha t))\right)\right]
\end{equation}
\section
{
Exact solution for advection diffusion equation on a domain growing exponentially till
$
t
=
t
_
c
$}
In this case, the map is:
...
...
@@ -212,27 +212,27 @@ L_0 \exp(\alpha t_c), \quad t>t_c
\end{equation}
The solution for
$
t
\leq
t
_
c
$
is the same as obtained in the previous section. For
$
t > t
_
c
$
, the problem is one of solving the diffusion equation on a fixed domain of length
$
L
=
L
_
0
\exp
(
\alpha
t
_
c
)
$
with the initial condition to be:
\begin{equation}
\label
{
ic
}
c(x, t
_
c) =
\exp
(-
\alpha
t
_
c)
\left
[1+ 0.2\cos\left(\frac{
\pi x}{L_0} \exp(-\alpha t_c)\right)\exp\left(\frac{-
\pi^2D}{2 \alpha L_0^2}(1-\exp(-2 \alpha t_c))\right)\right]
c(x, t
_
c) =
\exp
(-
\alpha
t
_
c)
\left
[1+ 0.2\cos\left(\frac{
m \pi x}{L_0} \exp(-\alpha t_c)\right)\exp\left(\frac{-m^2
\pi^2D}{2 \alpha L_0^2}(1-\exp(-2 \alpha t_c))\right)\right]
\end{equation}
Going to the fourier domain, the diffusion equation is:
\begin{equation}
\frac
{
d c
_
k
}{
dt
}
= -k
^
2 c
_
k
\frac
{
d c
_
k
}{
dt
}
= -
D
k
^
2 c
_
k
\end{equation}
\begin{equation}
\implies
c
_
k(t) = c
_
k (t
_
c)
\exp
[-k^2(t-t_c)]
\implies
c
_
k(t) = c
_
k (t
_
c)
\exp
[-
D
k^2(t-t_c)]
\end{equation}
Now,
$
c
_
k
(
t
_
c
)
$
is just the Fourier transform of Eq(
\ref
{
ic
}
). Thus,
\begin{equation}
c
_
k(t
_
c) = 2
\pi
e
^{
-
\alpha
t
_
c
}
\left
[\delta(k) + 0.1 e^{-\frac{D
}{2 \alpha L_0^2} \pi^2 (1 - e^{-2 \alpha t_c})} \left[\delta(k - \pi/L) + \delta (k+
\pi/L)\right]
\right
]
c
_
k(t
_
c) = 2
\pi
e
^{
-
\alpha
t
_
c
}
\left
[\delta(k) + 0.1 e^{-\frac{D
m^2}{2 \alpha L_0^2} \pi^2 (1 - e^{-2 \alpha t_c})} \left[\delta(k - m \pi/L) + \delta (k+ m
\pi/L)\right]
\right
]
\end{equation}
where
$
L
=
L
_
0
\exp
(
\alpha
t
_
c
)
$
Thus,
\begin{equation}
c
_
k(t) =
\exp\left
[-
k^2(t-t_c)\right]
2
\pi
e
^{
-
\alpha
t
_
c
}
\left
[\delta(k) + 0.1 e^{-\frac{D}{2 \alpha L_0^2} \pi^2 (1 - e^{-2 \alpha t_c})} \left[\delta(k - \pi/L) + \delta (k+
\pi/L)\right]
\right
]
c
_
k(t) =
\exp\left
[-
D k^2(t-t_c)\right]
2
\pi
e
^{
-
\alpha
t
_
c
}
\left
[\delta(k) + 0.1 e^{-\frac{D m^2}{2 \alpha L_0^2} \pi^2 (1 - e^{-2 \alpha t_c})} \left[\delta(k - m \pi/L) + \delta (k+ m
\pi/L)\right]
\right
]
\end{equation}
The final solution is the inverse fourier transform of this, viz,
\begin{equation}
c(x,t) =
\exp
(-
\alpha
t
_
c)
\left
[ 1 + 0.2 \cos\left(\frac{
\pi x}{L}\right) \exp \left( -\frac{\pi^2 (t - t_c)}{L^2} - \frac{D
\pi^2 (1 - e^{-2 \alpha t_c})}{2 \alpha L_0^2}\right) \right]
c(x,t) =
\exp
(-
\alpha
t
_
c)
\left
[ 1 + 0.2 \cos\left(\frac{
m \pi x}{L}\right) \exp \left( -\frac{D m^2 \pi^2 (t - t_c)}{L^2} - \frac{D m^2
\pi^2 (1 - e^{-2 \alpha t_c})}{2 \alpha L_0^2}\right) \right]
\end{equation}
where again
$
L
=
L
_
0
\exp
(
\alpha
t
_
c
)
$
\chapter*
{
Appendix: Visco-elastic models
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment