Deleted LaTeX files

parent d5b0265d
This is BibTeX, Version 0.99d (TeX Live 2019/Debian)
Capacity: max_strings=200000, hash_size=200000, hash_prime=170003
The top-level auxiliary file: notes.aux
I found no \citation commands---while reading file notes.aux
I found no \bibdata command---while reading file notes.aux
I found no \bibstyle command---while reading file notes.aux
You've used 0 entries,
0 wiz_defined-function locations,
83 strings with 484 characters,
and the built_in function-call counts, 0 in all, are:
= -- 0
> -- 0
< -- 0
+ -- 0
- -- 0
* -- 0
:= -- 0
add.period$ -- 0
call.type$ -- 0
change.case$ -- 0
chr.to.int$ -- 0
cite$ -- 0
duplicate$ -- 0
empty$ -- 0
format.name$ -- 0
if$ -- 0
int.to.chr$ -- 0
int.to.str$ -- 0
missing$ -- 0
newline$ -- 0
num.names$ -- 0
pop$ -- 0
preamble$ -- 0
purify$ -- 0
quote$ -- 0
skip$ -- 0
stack$ -- 0
substring$ -- 0
swap$ -- 0
text.length$ -- 0
text.prefix$ -- 0
top$ -- 0
type$ -- 0
warning$ -- 0
while$ -- 0
width$ -- 0
write$ -- 0
(There were 3 error messages)
\BOOKMARK [1][-]{section.0.1}{Diffusion on a growing disk}{}% 1
\BOOKMARK [2][-]{subsection.0.1.1}{Kinematics}{section.0.1}% 2
\BOOKMARK [2][-]{subsection.0.1.2}{Mass conservation}{section.0.1}% 3
\BOOKMARK [2][-]{subsection.0.1.3}{Exact solution}{section.0.1}% 4
\BOOKMARK [2][-]{subsection.0.1.4}{Specific examples}{section.0.1}% 5
\BOOKMARK [1][-]{section.0.2}{Diffusion in a growing sphere}{}% 6
\BOOKMARK [2][-]{subsection.0.2.1}{Kinematics}{section.0.2}% 7
\BOOKMARK [2][-]{subsection.0.2.2}{Mass conservation}{section.0.2}% 8
\BOOKMARK [2][-]{subsection.0.2.3}{Exact solution}{section.0.2}% 9
\BOOKMARK [2][-]{subsection.0.2.4}{Specific examples}{section.0.2}% 10
\documentclass[11pt, reqno]{amsart}
\usepackage{amssymb,amsmath,datetime,soul,graphicx,geometry}
\usepackage[dvipsnames]{xcolor}
\linespread{1.25}
\usepackage[colorlinks=true,citecolor=RoyalBlue,urlcolor=RoyalBlue]{hyperref}
% shortcuts
\newcommand{\vect}[1]{\boldsymbol{#1}}
\newcommand{\tens}[1]{\mathsf{#1}}
\newcommand{\uvec}[1]{\hat{\boldsymbol{#1}}}
\newcommand{\eqn}[1]{\begin{align}#1\end{align}}
\newcommand{\eq}[1]{\begin{align*}#1\end{align*}}
\begin{document}
\title{Diffusion in isotropically growing domains}
\date{\currenttime, \today}
\maketitle
Largely following \href{https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117949}{Exact Solutions of Linear Reaction-Diffusion Processes on a Uniformly Growing Domain: Criteria for Successful Colonization}, M J Simpson, PLoS One (2015).
\section{Kinematics}
We consider a linear reaction-diffusion process on a growing $n-$dimensional domain labelled by points $\vect{r} = (r, \uvec{n})$ where $0 < r < R(t)$ with $R(t)$ is the increasing radius of the domain and $\uvec{n}$ is a unit-vector indicating a direction ($\uvec{n}$ only exists for $n \geq 2$). Domain growth is associated with a \emph{radial} velocity field $\vect{v} = v(r,t) \, \uvec{r}$ which causes points at a distance $r$ from the origin to move to a distance $r + v(r,t) \, \Delta t $ in a short time $\Delta t$. Thus points at distances $r$ and $r + \Delta r$, respectively, move to
\eqn{r \to r^{\prime} &= r + v(r, t) \;\tau,
\\
r + \Delta r \to r^{\prime} + \Delta r^{\prime} &= r + \Delta r + v(r + \Delta r, t) \; \Delta t.}
Thus
\eqn{
\Delta r^{\prime} = \Delta r + \Delta t \; \big[ v(r + \Delta r, t) - v(r,t) \big]
\approx
\Delta r \left( 1 + \Delta t \frac{\partial v}{\partial r}\right)
}
implying
\eqn{
R^{\prime}(t) = R(t) + \Delta t \int_0^{R(t)} \frac{\partial v}{\partial r} dr
\qquad
\implies
\qquad
\frac{dR(t)}{dt} = \int_0^{R(t)} \frac{\partial v}{\partial r} dr
}
We consider uniform growth, i.e., $\partial_r v \equiv \sigma(t)$ is independent of $r$ but could potentially depend on time $t$. Thus
\eqn{
\sigma(t) = \frac{1}{R(t)} \frac{dR(t)}{dt}.
\label{eq:growth_rate}
}
We impose the boundary condition $v(0,t) = 0$ using which, on integrating \eqref{eq:growth_rate}, we find
\eqn{
v(r,t) = \frac{r}{R(t)} \frac{dR(t)}{dt} = \sigma(t) \; r.
}
\section{Mass conservation}
We now consider the conservation of a mass density $C(\vect{r}, t)$, assuming that it evolves according to a linear reaction-diffusion mechanism. The associated conservation statement on the growing domain can be written as
\eqn{
\partial_t C = D \nabla^2 C - \nabla \cdot (\vect{v} C) + k \, C,
\label{eq:general_reaction_diffusion}
}
where $D>0$ and $k$ are the diffusion constant and reaction rate respectively. Assuming a solution that only depends on the growth direction, i.e., $C(\vect{r}, t) = C(r, t)$, we get
\eqn{
\frac{\partial C}{\partial t} = \frac{D}{r^{n-1}} \, \frac{\partial}{\partial r} \left(r^{n-1} \frac{\partial C}{\partial r} \right) - \frac{1}{r^{n-1}} \, \frac{\partial (r^{n-1} v C)}{\partial r} + k\,C,
\\
= \frac{D}{r^{n-1}} \, \frac{\partial}{\partial r} \left(r^{n-1} \frac{\partial C}{\partial r} \right) - \frac{\sigma(t)}{r^{n-1}} \, \frac{\partial (r^{n} C)}{\partial r} + k\,C.
\label{eq:azimuthal_symmetry}
}
We impose zero diffusive flux conditions $\partial_r C = 0$ at $r=0$ and at $r=R(t)$. With some given initial conditions $C(r, 0)$ our aim is to find the exact solution of \eqref{eq:azimuthal_symmetry}.
\section{Rescaling}
We first transform the spatial variable to a fixed domain:
\eqn{ r \to \xi = \frac{r}{R}.}
This leads to
\eqn{
\frac{\partial}{\partial t} \to \frac{\partial}{\partial t} - \sigma \; \xi \frac{\partial}{\partial \xi},
\qquad \qquad
\frac{\partial}{\partial r} \to \frac{1}{R} \frac{\partial}{\partial \xi}
}
which implies
\eqn{
\frac{\partial C}{\partial t} =
\frac{D }{\xi^{n-1} R^2} \, \frac{\partial}{\partial \xi} \left(\xi^{n-1} \frac{\partial C}{\partial \xi} \right) + (k - n \, \sigma) C.
}
Next, we transform the variable:
\eqn{
t \to \tau = \int_0^t ds \; \frac{D}{R^2(s)}.
}
Then
\eqn{
\frac{\partial C}{\partial \tau} =
\frac{1}{\xi^{n-1}} \, \frac{\partial}{\partial \xi} \left(\xi^{n-1} \frac{\partial C}{\partial \xi} \right) + f(\tau) C
\label{eq:nondim_eqn}
}
where
\eqn{
f(t(\tau)) = \frac{R(t(\tau))^2}{D} \big[k - n \, \sigma(t(\tau)) \big].
}
\section{Exact solutions}
We use separation of variables to solve \eqref{eq:nondim_eqn}. Writing $C(\xi, \tau) = u(\xi) \; w(\tau)$,
\eqn{\frac{1}{w} \frac{dw}{d\tau} - f(\tau)= \frac{1}{u \, \xi^{n-1}} \frac{d}{d \xi} \left( \xi^{n-1} \frac{du}{d \xi} \right).}
With $-\omega^2$ as a separation constant, we get
\eqn{
\frac{dw}{d\tau} = \big[ f(\tau) - \omega^2 \big] w
\qquad
\implies
\qquad
w(\tau) = w(0) \exp\left[-\omega^2 \tau + \int_0^\tau ds\; f(s) \right],
}
and
\eqn{
\frac{d^2 u}{d\xi^2} + \frac{(n-1)}{\xi} \frac{du}{d\xi} + \omega^2 u = 0.
\label{eq:u_eqn}
}
We need to find solutions of \eqref{eq:u_eqn} with the boundary conditions that $u'(\xi) = 0$ at both $\xi=0$ and $\xi=1$.
\begin{itemize}
\item When $n=1$, we get
\eqn{u'' + \omega^2 u = 0,}
and thus we need $\omega=m\pi, m \in \mathbb{Z}$ to satisfy the boundary conditions. The general solution is thus
\eqn{u(\xi, \tau) = \sum_{m=0}^{\infty} a_m \cos\left(m \pi \xi \right) \; \exp\left[-m^2 \pi^2 \tau + \int_0^\tau ds\; f(s) \right].}
%
\item When $n=2$, we get
\eqn{\xi \, u'' + u' + \omega^2 \, \xi \, u = 0,}
the solutions of which are the zeroth-order Bessel functions $J_0(\omega\xi)$ and $Y_0(\omega\xi)$. Requiring $u$ to be bounded at $\xi=0$, we neglect the $Y_0$ solution. Imposing the boundary condition
\eqn{\frac{dJ_0(z)}{dz}\bigg\vert_{z=\omega}=0 \qquad \implies J_1(\omega)=0,
\label{eq:bc_n2}}
determines the allowed values of $\omega$ as the zeroes of the 1st-order Bessel function. The general solution is thus
\eqn{u(\xi, \tau) = \sum_{\omega} a_{\omega} \, J_0(\omega \xi) \; \exp\left[-\omega^2 \tau + \int_0^\tau ds\; f(s) \right],}
where the summation is over those values of $\omega$ satisfying \eqref{eq:bc_n2}.
%
\item When $n=3$, we get
\eqn{\xi \, u'' + 2 \, u' + \omega^2 \, \xi \, u = 0,}
the solutions of which are the zeroth-order \emph{spherical} Bessel functions
\eqn{
j_0(\omega \xi) = \frac{\sin (\omega \xi)}{\omega \xi},
\qquad \mathrm{and} \qquad
y_0(\omega \xi) = -\frac{\cos (\omega \xi)}{\omega \xi}.}
Requiring $u$ to be bounded at $\xi=0$, we neglect the $y_0$ solution. Imposing the boundary condition
\eqn{\frac{dj_0(z)}{dz}\bigg\vert_{z=\omega}=0 \qquad \implies \qquad
\tan \omega = \omega,
\label{eq:bc_n3}}
determines the allowed values of $\omega$. The general solution is thus
\eqn{u(\xi, \tau) = \sum_{\omega} a_{\omega} \, \frac{\sin (\omega \xi)}{\omega \xi} \; \exp\left[-\omega^2 \tau + \int_0^\tau ds\; f(s) \right],}
where the summation is over those values of $\omega$ satisfying \eqref{eq:bc_n3}.
\end{itemize}
\section{Three cases}
\subsection{Non-growing domain}
With $R(t) = R_0$ in this case, we get
\eqn{\sigma(t)=0, \qquad \tau=\frac{Dt}{R_0^2}, \qquad f=\frac{R_0^2k}{D}.}
Hence $\tau \to\infty$ as $t\to\infty$. Thus
\begin{itemize}
%
\item $n=1$
\eqn{
C(r,t) = \sum_{m=0}^{\infty} a_m \cos\left(\frac{m \pi r}{R_0} \right) \; \exp\left(-\frac{m^2 \pi^2 D t}{R_0^2} + k t \right),
\qquad \mathrm{with} \quad m \in \mathbb{Z}
}
%
\item $n=2$
\eqn{C(r, t) = \sum_{\omega} a_{\omega} \, J_0\left(\frac{\omega r}{R_0} \right) \; \; \exp\left(-\frac{\omega^2 D t}{R_0^2} + k t \right),
\qquad \mathrm{with} \quad J_1(\omega)=0.
}
%
\item $n=3$
\eqn{C(r, t) = \sum_{\omega} a_{\omega} \, \frac{R_0}{\omega r} \; \sin \left(\frac{\omega r}{R_0}\right) \; \; \exp\left(-\frac{\omega^2 D t}{R_0^2} + k t \right),
\qquad \mathrm{with} \quad \tan \omega = \omega.}
\end{itemize}
\subsection{Exponential domain growth}
With $R(t) = R_0 e^{\alpha t}$ in this case, we get,
\eqn{\sigma(t)=\alpha, \qquad \tau=\frac{D \; (1-e^{-2\alpha t})}{2\alpha R_0^2} , \qquad \int_0^\tau f(s) ds = \ln\left(\frac{D}{D - 2 \alpha R_0^2 \tau}\right)^{(k-n\alpha)/2\alpha} .}
Hence $\tau \to D/(2\alpha R_0^2)$ as $t\to\infty$. Thus
\begin{itemize}
%
\item $n=1$
\eqn{C(r,t) = \sum_{m=0}^\infty a_m \cos\left( \frac{m \pi r}{R(t)}\right) \exp\left[{-\frac{m^2 \pi^2 D}{2 \alpha R_0^2} (1 - e^{-2\alpha t})+t(k-\alpha)}\right],
\qquad \mathrm{with} \quad m \in \mathbb{Z}}
%
\item $n=2$
\eqn{C(r,t) = \sum_{\omega}^\infty a_\omega J_0\left( \frac{\omega r}{R(t)}\right) \exp\left[{-\frac{\omega^2 D}{2 \alpha R_0^2} (1 - e^{-2\alpha t})+t(k-2\alpha)}\right],
\qquad \mathrm{with} \quad J_1(\omega)=0.}
%
\item $n=3$
\eqn{C(r,t) = \sum_{\omega}^\infty a_\omega \frac{ R(t)}{\omega r} \sin\left( \frac{\omega r}{R(t)}\right) \exp\left[{-\frac{\omega^2 D}{2 \alpha R_0^2} (1 - e^{-2\alpha t})+t(k-3\alpha)}\right],
\qquad \mathrm{with} \quad \tan \omega = \omega.}
\end{itemize}
\subsection{Linear domain growth}
With $R(t) = R_0 + \alpha t$ in this case, we get
\eqn{\sigma(t) = \frac{\alpha}{R_0 + \alpha t}, \qquad\tau=\frac{D \; t}{R_0 (R_0 + \alpha t)} , \qquad \int_0^\tau f(s) ds = \frac{R_0^2 k \tau}{(D - \alpha R_0 \tau)} + \ln \left( \frac{D - R_0 \alpha \tau}{D}\right)^{n}.}
Hence $\tau \to D/(\alpha R_0)$ as $t\to\infty$. Thus
\begin{itemize}
%
\item $n=1$
\eqn{C(r,t) = \sum_{m=0}^\infty a_m \cos\left( \frac{m \pi r}{R(t)}\right) \exp\left[{-\frac{m^2 \pi^2 D t}{R(t) R_0} + tk}\right] \left(\frac{R_0}{R(t)}\right),
\qquad \mathrm{with} \quad m \in \mathbb{Z}}
%
\item $n=2$
\eqn{C(r,t) = \sum_{\omega}^\infty a_\omega J_0\left( \frac{\omega r}{R(t)}\right) \exp\left[{-\frac{\omega^2 D t}{R(t) R_0} + tk}\right] \left(\frac{R_0}{R(t)}\right)^2,
\qquad \mathrm{with} \quad J_1(\omega)=0.}
%
\item $n=3$
\eqn{C(r,t) = \sum_{\omega}^\infty a_\omega \frac{ R(t)}{\omega r} \sin\left( \frac{\omega r}{R(t)}\right) \exp\left[{-\frac{\omega^2 D t}{R(t) R_0} + tk} \right] \left(\frac{R_0}{R(t)}\right)^3,
\qquad \mathrm{with} \quad \tan \omega = \omega.}
\end{itemize}
\end{document}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or sign in to comment