Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
Jigyasa Watwani
/
growth-pattern-control
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Members
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit
2ef9e252
authored
Nov 07, 2022
by
Jigyasa Watwani
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
expressions for no growth, linear growth, exponential growth
parent
8d6cae91
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
34 additions
and
11 deletions
growing_domain/notes.tex
growing_domain/notes.tex
View file @
2ef9e252
...
...
@@ -88,22 +88,45 @@ Finally, we express the second term on the RHS as a function of $T$ to write:
The above equation can be solved easily by separation of variables. Writing
$
C
(
\xi
, T
)
=
u
(
\xi
)
v
(
T
)
$
,
\eqn
{
\frac
{
1
}{
v
}
\frac
{
dv
}{
dt
}
=
\frac
{
1
}{
u
\xi
^
2
}
\frac
{
d
}{
d
\xi
}
\left
(
\xi
^
2
\frac
{
du
}{
d
\xi
}
\right
) + f(T)
}
Thus,
\eqn
{
\frac
{
1
}{
v
}
\frac
{
dv
}{
d
t
}
- f(T) =
\frac
{
1
}{
u
\xi
^
2
}
\frac
{
d
}{
d
\xi
}
\left
(
\xi
^
2
\frac
{
du
}{
d
\xi
}
\right
) = -k
^
2
}
\eqn
{
\frac
{
1
}{
v
}
\frac
{
dv
}{
d
T
}
- f(T) =
\frac
{
1
}{
u
\xi
^
2
}
\frac
{
d
}{
d
\xi
}
\left
(
\xi
^
2
\frac
{
du
}{
d
\xi
}
\right
) = -n
^
2
}
Solving the
$
v
$
equation first:
\eqn
{
v(T) = v(0)
\exp\left
[-
k
^2 T + \int_0^T f(T^{\star}) dT^\star \right]
}
\eqn
{
v(T) = v(0)
\exp\left
[-
n
^2 T + \int_0^T f(T^{\star}) dT^\star \right]
}
And the
$
u
$
equation reads:
\eqn
{
\frac
{
d
^
2 u
}{
d
\xi
^
2
}
+
\frac
{
2
}{
\xi
}
\frac
{
du
}{
d
\xi
}
+
k
^
2 u = 0
}
\eqn
{
\frac
{
d
^
2 u
}{
d
\xi
^
2
}
+
\frac
{
2
}{
\xi
}
\frac
{
du
}{
d
\xi
}
+
n
^
2 u = 0
}
This is the Bessel equation of zeroth order, having solutions
\eqn
{
u(
\xi
) = c
_
1 j
_
0 (
k
\xi
) + c
_
2 y
_
0 (k
\xi
)
}
\eqn
{
u(
\xi
) = c
_
1 j
_
0 (
n
\xi
) + c
_
2 y
_
0 (n
\xi
)
}
where
$
j
_
0
, y
_
0
$
are spherical bessel functions given by
\eq
{
j
_
0 (
k
\xi
) =
\frac
{
\sin
(k
\xi
)
}{
k
\xi
}}
\eq
{
y
_
0 (
k
\xi
) = -
\frac
{
\cos
(k
\xi
)
}{
k
\xi
}}
\eq
{
j
_
0 (
n
\xi
) =
\frac
{
\sin
(n
\xi
)
}{
n
\xi
}}
\eq
{
y
_
0 (
n
\xi
) = -
\frac
{
\cos
(n
\xi
)
}{
n
\xi
}}
Thus, the exact solution in the
$
(
\xi
, T
)
$
coordinates is :
\eqn
{
C(
\xi
, T) =
\left
[ a_1 j_0 (
k \xi) + a_2 y_0 (k \xi)\right]
\exp\left
[-k
^2 T + \int_0^T f(T^\star) dT^\star \right]
}
\eqn
{
C(
\xi
, T) =
\left
[ a_1 j_0 (
n \xi) + a_2 y_0 (n \xi)\right]
\exp\left
[-n
^2 T + \int_0^T f(T^\star) dT^\star \right]
}
Since we want the solution to be bounded at
$
\xi
=
0
$
, we keep only the
$
j
_
0
$
term:
\eqn
{
C(
\xi
, T) = a
_
1 j
_
0 (
k
\xi
)
\exp\left
[-k
^2 T + \int_0^T f(T^\star) dT^\star \right]
}
\eqn
{
C(
\xi
, T) = a
_
1 j
_
0 (
n
\xi
)
\exp\left
[-n
^2 T + \int_0^T f(T^\star) dT^\star \right]
}
And
\eqn
{
\frac
{
\partial
C
}{
\partial
\xi
}
= a
_
1
\left
(
\frac
{
1
}{
\xi
}
\cos
(k
\xi
) -
\frac
{
1
}{
k
\xi
^
2
}
\sin
(k
\xi
)
\right
)
\exp\left
[-k^2 T + \int_0^T f(T^\star) dT^\star \right]
.
\label
{
neumann
}}
Demanding Eq(
\ref
{
neumann
}
) to be zero at
$
\xi
=
1
$
(Neumann boundary conditions at
$
\xi
=
1
$
), one can get
$
k
$
to be the solution of:
\eqn
{
\tan
(k)= k
}
\eqn
{
\frac
{
\partial
C
}{
\partial
\xi
}
= a
_
1
\left
(
\frac
{
1
}{
\xi
}
\cos
(n
\xi
) -
\frac
{
1
}{
n
\xi
^
2
}
\sin
(n
\xi
)
\right
)
\exp\left
[-n^2 T + \int_0^T f(T^\star) dT^\star \right]
.
\label
{
neumann
}}
Demanding Eq(
\ref
{
neumann
}
) to be zero at
$
\xi
=
1
$
(Neumann boundary conditions at
$
\xi
=
1
$
), one can get
$
n
$
to be the solution of:
\eqn
{
\tan
(n)= n
}
Thus, the most general solution is:
\eq
{
C(
\xi
, T) =
\sum
_{
n
}
a
_
n j
_
0(n
\xi
)
\exp\left
[-n^2 T + \int_0^T f(T^\star) dT^\star \right]
}
where the sum is over solutions of
$
\tan
(
n
)
=
n
$
and
$
a
_
n
$
is determined by the initial conditions.
\section
{
No growth
}
In this case,
$
R
(
t
)
=
R,
\sigma
(
t
)
=
0
, f
(
T
^
\star
)
=
R
^
2
k
/
D
$
.
This gives
\eq
{
C(
\xi
, T) =
\sum
_
n a
_
n
\left
(
\frac
{
\sin
(n
\xi
)
}{
n
\xi
}
\right
) e
^{
-n
^
2 T
}
e
^{
R
^
2 k T/D
}}
Plugging in
$
T
=
D t
/
R
^
2
$
and
$
\xi
=
r
/
R
$
,
\eqn
{
C(r,t) =
\sum
_
n a
_
n
\left
(
\frac
{
\sin
(nr/R)
}{
nr/R
}
\right
) e
^{
-
\frac
{
n
^
2 D t
}{
R
^
2
}}
e
^{
kt
}}
\section
{
Exponential domain growth
}
In this case,
$
R
(
t
)
=
R
_
0
e
^{
\alpha
t
}
,
\sigma
(
t
)=
\alpha
$
\eq
{
T =
\frac
{
D(1 - e
^{
-2
\alpha
t
}
)
}{
2
\alpha
R
_
0
^
2
}}
And
\eq
{
f( T
^
\star
) =
\frac
{
R
_
0
^
2 (k - 3
\alpha
)
}{
D - 2
\alpha
R
_
0
^
2 T
^{
\star
}}}
Then,
\eq
{
C(
\xi
, T) =
\sum
_
n a
_
n j
_
0(n
\xi
) e
^{
-n
^
2 T
}
\frac
{
k - 3
\alpha
}{
2
\alpha
}
\left
(1 -
\frac
{
2
\alpha
R
_
0
^
2 T
}{
D
}
\right
)
}
and
\eqn
{
C(r,t) =
\frac
{
k - 3
\alpha
}{
2
\alpha
}
e
^{
- 2
\alpha
t
}
\sum
_
n a
_
n j
_
0
\left
(
\frac
{
n r
}{
R(t)
}
\right
) e
^{
-
\frac
{
n
^
2 D(1 - e
^{
-2
\alpha
t
}
)
}{
2
\alpha
R
_
0
^
2
}}}
\section
{
Linear domain growth
}
In this case,
$
R
(
t
)=
R
_
0
+
bt,
\sigma
(
t
)
=
b
/
R
(
t
)
$
.
\\
Further,
\eq
{
T =
\frac
{
D t
}{
R(t) R
_
0
}}
, or,
\eq
{
t =
\frac
{
R
_
0
^
2 T
}{
D - R
_
0 b T
}}
And
\eq
{
f(T
^
\star
) =
\frac
{
R
_
0
}{
(D - R
_
0 bT
^
\star
)
^
2
}
(k D R
_
0 - 3 b D + 3bR
_
0T
^
\star
)
}
Then
\eq
{
C(
\xi
, T) = e
^{
kt
}
\left
(
\frac
{
R
_
0
}{
R(t)
}
\right
)
^
3
\sum
_
n a
_
n j
_
0(n
\xi
) e
^{
-n
^
2 T
}
e
^{
\frac
{
k R
_
0
^
2 T
}{
D - R
_
0 b T
}}
\left
(
\frac
{
D - R
_
0 b T
}{
D
}
\right
)
^
3
}
\eqn
{
C(r, t) =
\sum
_
n a
_
n j
_
0
\left
(
\frac
{
n r
}{
R(t)
}
\right
)e
^{
-
\frac
{
n
^
2 D t
}{
R(t) R
_
0
}}
}
\end{document}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment