Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
Jigyasa Watwani
/
growth-pattern-control
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Members
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit
1a71fc46
authored
Sep 09, 2022
by
Jigyasa Watwani
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
max error scaling linearly with dt
parent
f83b6210
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
46 additions
and
46 deletions
diffusion/diffusion_moving_domain.py
diffusion/diffusion_moving_domain.py
View file @
1a71fc46
...
@@ -7,61 +7,61 @@ import progressbar
...
@@ -7,61 +7,61 @@ import progressbar
df
.
set_log_level
(
df
.
LogLevel
.
ERROR
)
df
.
set_log_level
(
df
.
LogLevel
.
ERROR
)
df
.
parameters
[
'form_compiler'
][
'optimize'
]
=
True
df
.
parameters
[
'form_compiler'
][
'optimize'
]
=
True
Nx
,
L
,
D
,
tmax
,
dt
=
32
,
1.0
,
0.1
,
2.0
,
0.05
def
advection_diffusion
(
Nx
,
L
,
Nt
,
tmax
,
D
):
Nt
=
int
(
tmax
/
dt
)
# mesh, function space, function, test function
mesh
=
df
.
IntervalMesh
(
Nx
,
0
,
L
)
mesh
=
df
.
IntervalMesh
(
Nx
,
0
,
L
)
SFS
=
df
.
FunctionSpace
(
mesh
,
'P'
,
1
)
x
=
mesh
.
coordinates
()[:,
0
]
c
=
df
.
Function
(
SFS
)
times
=
np
.
linspace
(
0
,
tmax
,
Nt
+
1
)
tc
=
df
.
TestFunction
(
SFS
)
SFS
=
df
.
FunctionSpace
(
mesh
,
'P'
,
1
)
# x and t arrays
c
=
df
.
Function
(
SFS
)
x
=
mesh
.
coordinates
()[:,
0
]
tc
=
df
.
TestFunction
(
SFS
)
times
=
np
.
linspace
(
0
,
tmax
,
Nt
+
1
)
c0
=
df
.
Function
(
SFS
)
dt
=
times
[
1
]
-
times
[
0
]
c0
.
interpolate
(
df
.
Expression
(
'1 + 0.1 * cos(2*pi*x[0]/L)'
,
pi
=
np
.
pi
,
L
=
L
,
degree
=
1
))
# initial condition
c0
=
df
.
Function
(
SFS
)
c_exact
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
c0
.
interpolate
(
df
.
Expression
(
'1 + 0.1 * cos(2*pi*x[0]/L)'
,
pi
=
np
.
pi
,
L
=
L
,
degree
=
1
))
for
i
in
range
(
Nt
+
1
):
c_exact
[
i
]
=
1
+
0.1
*
np
.
cos
(
2
*
np
.
pi
*
x
/
L
)
*
np
.
exp
(
-
4
*
np
.
pi
**
2
*
D
*
times
[
i
]
/
L
**
2
)
# arrays
c_array
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
))
c_array
=
np
.
zeros
((
Nt
+
1
,
Nx
+
1
)
)
c_array
[
0
]
=
c0
.
compute_vertex_values
(
mesh
)
c_array
[
0
]
=
c0
.
compute_vertex_values
(
mesh
)
# form
cform
=
(
df
.
inner
((
c
-
c0
)
/
dt
,
tc
)
cform
=
(
df
.
inner
((
c
-
c0
)
/
dt
,
tc
)
+
D
*
df
.
inner
(
df
.
nabla_grad
(
c
),
df
.
nabla_grad
(
tc
)))
*
df
.
dx
+
D
*
df
.
inner
(
df
.
nabla_grad
(
c
),
df
.
nabla_grad
(
tc
)))
*
df
.
dx
for
i
in
progressbar
.
progressbar
(
range
(
1
,
Nt
+
1
)):
# solve
for
i
in
progressbar
.
progressbar
(
range
(
1
,
Nt
+
1
)):
df
.
solve
(
cform
==
0
,
c
)
df
.
solve
(
cform
==
0
,
c
)
c0
.
assign
(
c
)
c0
.
assign
(
c
)
c_array
[
i
]
=
c0
.
compute_vertex_values
(
mesh
)
c_array
[
i
]
=
c0
.
compute_vertex_values
(
mesh
)
fig
,
(
ax
,
ax1
)
=
plt
.
subplots
(
2
,
1
)
return
c_array
fig
.
suptitle
(
r'$N_x =
%
d, \Delta t =
%4.3
f$'
%
(
Nx
,
dt
))
cplot
,
=
ax
.
plot
(
x
,
c_array
[
0
],
'ro'
,
mfc
=
'none'
,
ms
=
6
,
label
=
'Numerics'
)
ceplot
,
=
ax
.
plot
(
x
,
c_exact
[
0
],
label
=
'Exact'
)
ax
.
set_xlabel
(
r'$x$'
)
ax
.
set_ylabel
(
r'$c(x,t)$'
)
ax
.
legend
(
loc
=
1
)
error
=
c_array
-
c_exact
print
(
np
.
max
(
error
))
err_plot
,
=
ax1
.
plot
(
x
,
error
[
0
],
'bo'
,
mfc
=
'none'
,
ms
=
6
)
# parameters
ax1
.
set_ylim
(
np
.
min
(
error
),
np
.
max
(
error
))
Nx
,
L
,
D
,
tmax
=
64
,
1.0
,
0.1
,
1.0
ax1
.
set_xlabel
(
r'$x$'
)
nt_array
=
np
.
array
([
50
,
100
,
200
,
400
,
600
,
800
,
1600
])
ax1
.
set_ylabel
(
r'$c(x,t)-c_{\rm exact}(x,t)$'
)
dt_array
=
tmax
/
nt_array
mesh
=
df
.
IntervalMesh
(
Nx
,
0
,
L
)
x
=
mesh
.
coordinates
()[:,
0
]
def
update
(
val
):
# error array
ti
=
(
abs
(
times
-
val
))
.
argmin
()
error
=
np
.
zeros
(
len
(
nt_array
))
cplot
.
set_ydata
(
c_array
[
ti
])
ceplot
.
set_ydata
(
c_exact
[
ti
])
err_plot
.
set_ydata
(
error
[
ti
])
for
i
in
range
(
0
,
len
(
nt_array
)):
plt
.
draw
()
sax
=
plt
.
axes
([
0.1
,
0.92
,
0.7
,
0.025
])
# exact solution
sl
=
Slider
(
sax
,
't'
,
times
.
min
(),
times
.
max
(),
valinit
=
times
.
min
())
c_exact
=
np
.
zeros
((
nt_array
[
i
]
+
1
,
Nx
+
1
))
sl
.
on_changed
(
update
)
times
=
np
.
linspace
(
0
,
tmax
,
nt_array
[
i
]
+
1
)
for
j
in
range
(
nt_array
[
i
]
+
1
):
c_exact
[
j
]
=
1
+
0.1
*
np
.
cos
(
2
*
np
.
pi
*
x
/
L
)
*
np
.
exp
(
-
4
*
np
.
pi
**
2
*
D
*
times
[
j
]
/
L
**
2
)
c
=
advection_diffusion
(
Nx
,
L
,
nt_array
[
i
],
tmax
,
D
)
error
[
i
]
=
np
.
max
(
np
.
abs
(
c
-
c_exact
))
fig
,
ax
=
plt
.
subplots
(
1
)
ax
.
plot
(
dt_array
,
error
,
'bo'
)
ax
.
set_xlabel
(
'$dt$'
)
ax
.
set_ylabel
(
'error'
)
plt
.
show
()
plt
.
show
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment