The last step follows from the requirement that neumann conditions are satified at all times.
\section{Exact solution for advection diffusion equation on a moving domain}
\section{Exact solution for advection diffusion equation on a domain growing exponentially}
We checked if our numerical solution for the advection-diffusion equation on a moving domain matches the analytical expression in \cite{Simpson2015-xe}
\bibliographystyle{plain}.
The equation we intend to solve is:
...
...
@@ -185,6 +185,56 @@ Putting in the initial condition,
\section{Exact solution for advection diffusion equation on a domain growing exponentially till $t=t_c$}
In this case, the map is:
\begin{equation}
x(s,t)=
\begin{cases}
s \exp(\alpha t), \quad t \leq t_c \\
s \exp(\alpha t_c), \quad t>t_c
\end{cases}
\end{equation}
The velocity is:
\begin{equation}
v(x,t) =
\begin{cases}
\alpha x, \quad t \leq t_c \\
0, \quad t>t_c
\end{cases}
\end{equation}
The domain length is:
\begin{equation}
L(t) =
\begin{cases}
L_0 \exp(\alpha t), \quad t \leq t_c \\
L_0 \exp(\alpha t_c), \quad t>t_c
\end{cases}
\end{equation}
The solution for $t \leq t_c$ is the same as obtained in the previous section. For $t > t_c$, the problem is one of solving the diffusion equation on a fixed domain of length $L = L_0\exp(\alpha t_c)$ with the initial condition to be:
As the name suggests, viscoelastic materials have an elastic component and a viscous component. For the elastic component, the stress $\sigma_e$ is related to the strain $\epsilon_e$ as: