Commit 089ebb16 by Jigyasa Watwani

deleting redundant files

parent 57f5beba
Showing with 0 additions and 308 deletions
\documentclass[10pt,a4paper]{report}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
\author{Jigyasa Watwani}
\title{Physics of Growth Regulation in Cells and Tissues - Notes}
\begin{document}
\chapter{A minimal model}
We model a 1-D tissue as a visco-elastic medium. We write hydrodynamic equations for the evolution of a displacement field $\boldsymbol u(x,t)$, a density field $\rho(x,t)$ and a concentration field for the signaling morphogen $c(x,t)$ that tells the cells when to divide.
THe equation for $\boldsymbol u$ is a force balance equation (divergence of the total stress = force density). We use the Kelvin Voigt model to be able to get long-time leastic behaviour:
\begin{equation*}
\gamma \dot u = \partial_x \sigma
\end{equation*}
\begin{equation*}
\sigma = \sigma_{e} + \sigma_{v} + \sigma_{a} = K \partial_x u + \eta \partial_x \dot u + \lambda \partial_x f(c,\rho)
\end{equation*}
Thus,
\begin{equation}
\gamma \dot u = K \partial_x^2 u + \eta \partial_x^2 \dot u + \lambda \partial_x f
\end{equation}
The equation for the cell density is a diffusion advection equation, with terms added to account for cell birth and death:
\begin{equation}
\dot \rho = D_\rho \partial_x^2 \rho - \partial_x(\dot u \rho) - k_{\rho}(\rho - \rho_0) + F(u, c_i, \rho, t)
\end{equation}
The $c-$dependence of $F$ is the sizer/adder-like behaviour that changes cell density/number based on the concentration field.
The dynamics for concentration of the $i-$th signaling morphogen is:
\begin{equation}
\dot c_i = D_{c_i} \partial_x^2 c_i - \partial_x(\dot {u} c_i) + G(u, c_i, \rho, t)
\end{equation}
\section{No signaling on fixed boundaries}
Choosing $f = \frac{\rho}{\rho + \rho_s}$,
\begin{eqnarray}
\dot u = v \\
\gamma \dot u = K \partial_x^2 u + \eta \partial_x^2 \dot u + \lambda \partial_x \left( \frac{\rho}{\rho + \rho_s}\right)\\
\dot \rho = D_{\rho} \partial_x^2 \rho - \partial_x (\dot u \rho) - k_{\rho}(\rho - \rho_0)
\end{eqnarray}
The boundary conditions are:
\begin{equation}
u\big|_{\partial \Omega} = 0 \qquad v\big|_{\partial \Omega} = 0 \qquad
J_{\rho}\big|_{\partial \Omega} = 0 \implies (v \rho - \partial_X \rho)\big|_{\partial \Omega} = 0
\end{equation}
\section{Moving boundaries}
The equations are the same.
The boundary conditions are:
\begin{equation}
\rho \big|_{\partial \Omega} = 0 \qquad \sigma \big|_{\partial \Omega} = 0
\end{equation}
\section{Controlling growth}
A generic control problem goes as follows: Given a differential equation $\dot x = f(x,u)$ with the initial condition $x(0)=0$, find the control path $u(t)$ that minimizes a cost (which we will construct) subject to the equation $\dot x = f(x,u)$ being satisfied.
The cost $J$ involves a running cost, for the path reaching a final state and a terminal cost.
\begin{equation}
J = \int_0^T V(x,u)dt + \Phi(x(T))
\end{equation}
Going back to oyr problem, we tackle the control aspects in two steps:
\begin{enumerate}
\item What form of active stress would minimize the cost function $J = \Phi[L(T)] + \int_0^T h(L(t)) dt$ subject to $\gamma \dot u = \partial_x \sigma$
\item Use the optimum active stress obtained in step 1 to get appropriate reaction terms/boundary conditions on $c_i$.
\end{enumerate}
\chapter{Model on fixed bouundaries}
\chapter{Model on moving boundaries}
Note:
\section{Diffusion on fixed boundaries becomes diffusion-advection on moving boundaries}
\begin{equation}
\frac{d}{dt}\int_{\Omega(t)} c(x,t) dV = - \int_{\Omega(t)} \boldsymbol J \cdot \boldsymbol {dS} = - \int_{\Omega(t)} \boldsymbol \nabla \cdot \boldsymbol J dV
\end{equation}
where $\boldsymbol J=-D\boldsymbol \nabla c$ is the diffusiove flux.
In 1-D, this becomes,
\begin{equation}
\frac{d}{dt}\int_{\Omega(t)} c(x,t) dx = D \int_{\Omega(t)} \frac{\partial^2 c}{\partial x^2} dx
\end{equation}
\begin{equation}
\implies \frac{d}{dt} \int_{\Omega(t)} \left[ \frac{\partial c}{\partial t} + \frac{\partial (vc)}{\partial x}\right]dx = D \int_{\Omega(t)} \frac{\partial^2 c}{\partial x^2} dx
\end{equation}
where the LHS follows from Reynolds TRansport Theorem in 1-D and $v$ is the velocity of the moving domain.\\
Since the above is true for any arbitrary interval and any arbitrarry $\Omega(t)$, equality of integrals implies equality of integrands:
\begin{equation}
\implies \frac{\partial c}{\partial t} + \frac{\partial (vc)}{\partial x} = D \frac{\partial^2 c}{\partial x^2}
\end{equation}
That is, a simple diffusion equation has become a diffusion-advection equation on a moving domain.
\section{Conservation laws}
Claim: If neumann conditions are satified at all times, total concentration on the moving domain is conserved in time, that is
\begin{equation}
\frac{d}{dt} \int_0^{L(t)} c(x,t)dx =0
\end{equation}
Proof: From RTT, \begin{equation}
\begin{split}
\frac{d}{dt} \int_0^{L(t)} c(x,t)dx = \int_0^{L(t)} \left[ \frac{\partial c}{\partial t} + \frac{\partial}{\partial x} (vc)\right]dx
\end{split}
\end{equation}
Putting $\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - \frac{\partial (vc)}{\partial x}$ in the above,
\begin{equation}
\begin{split}
\frac{d}{dt} \int_0^{L(t)} c(x,t)dx &= \int_0^{L(t)} D \frac{\partial^2 c}{\partial x^2} dx\\
&= D \frac{\partial c}{\partial x} \bigg{|}_{0}^{L(t)}\\
&= 0
\end{split}
\end{equation}
The last step follows from the requirement that neumann conditions are satified at all times.
\section{Exact solution for advection diffusion equation on a domain growing exponentially}
We checked if our numerical solution for the advection-diffusion equation on a moving domain matches the analytical expression in \cite{Simpson2015-xe}
\bibliographystyle{plain}.
The equation we intend to solve is:
\begin{equation} \label{diffusion_advection_equation}
\frac{\partial C}{\partial t} = D\frac{\partial^2 C}{\partial x^2} - \frac{\partial(vC)}{\partial x}
\end{equation}
Here, $C$ is the concentration of the morphogen diffusing and advecting in a $1$-D domain of size $L(t)$.
Let the fixed domain be parameterized by $s$ and the moving domain be parameterized by $x$. We define a map $x(s,t)$. The velocity of a point $s$ at time $t$ is given by
\begin{equation} \label{vel_def}
v=\frac{\partial x(s,t)}{\partial t}
\end{equation}
Eventually, we want to scale $x(t)$ by $L(t)$. So we need to find $L(t)$.
Now,
\begin{equation} \label{length_def}
L(t) = \int_0^{L_0} \frac{\partial x(s,t)}{\partial s} ds
\end{equation}
Let us choose a map $x(s,t) = s \exp(\alpha t) $. The velocity of the domain is then given by (from Eq \ref{vel_def}):
\begin{equation}
v(s,t) = \alpha s \exp(\alpha t)
\end{equation}
or, in the moving domain:
\begin{equation}
v(x,t) = \alpha x
\end{equation}
Thus, for our chosen map, the advection velocity is $v = \alpha x$. We also move the domain by this velocity.
And finally, the length of the domain is given by (from Eq \ref{length_def} and the definition of our chosen map):
\begin{equation}
L(t) = L_0 \exp(\alpha t)
\end{equation}
We now scale variables $x \to \xi = x/L(t)$. Note then that the derivatives transform as:
\begin{equation}
\frac{\partial C}{\partial x} \to \frac{1}{L(t)} \frac{\partial C}{\partial \xi}
\end{equation}
\begin{equation}
\frac{\partial^2 C}{\partial x^2} \to \frac{1}{L(t)^2} \frac{\partial^2 C}{\partial \xi^2}
\end{equation}
and
\begin{equation}
\frac{\partial C}{\partial t} \to \frac{\partial C}{\partial t} - \alpha \xi \frac{\partial C}{\partial \xi}
\end{equation}
Converting Eq(\ref{diffusion_advection_equation}) in terms of $\{\zeta, t\}$
\begin{equation} \label{rescaled1}
\frac{\partial C}{\partial t} = \frac{D}{L(t)^2}\frac{\partial^2 C}{\partial \zeta^2} - \alpha C
\end{equation}
We again scale $t \to T = \int_0^t \frac{D}{L(s)^2}ds $, i.e,
\begin{equation}
T = \frac{D}{2 \alpha L_0^2}(1- \exp(-2 \alpha t))
\end{equation}
or,
\begin{equation}
\exp(-2 \alpha t) = 1-\frac{2 \alpha L_0^2 T}{D} \implies \exp(2 \alpha t) = \frac{D}{D-2\alpha L_0^2 T}
\end{equation}
and again changing variables in Eq(\ref{rescaled1}) from $\{\zeta, t\} \to \{\zeta, T\}$, the derivatives transform as:
\begin{equation}
\frac{\partial C}{\partial t} \to \frac{D-2\alpha L_0^2 T}{L_0^2} \frac{\partial C}{\partial T}
\end{equation}
This implies Eq(\ref{rescaled1}) becomes:
\begin{equation}
\frac{\partial C}{\partial T} + \frac{\alpha C L_0^2}{D - 2 \alpha L_0^2 T}= \frac{\partial^2 C}{\partial \zeta^2}
\end{equation}
This can be solved by separation of variables to give the most general solution:
\begin{equation}
C(\zeta, T) = \exp(-k^2 T) \sqrt{\frac{D - 2\alpha L_0^2 T}{D}}[c_1 \sin(k\zeta) + c_2 \cos(k\zeta)]
\end{equation}
Using Neumann boundary conditions $\partial C/\partial \zeta = 0$ at $\zeta = 0$ and $\zeta = 1$, we get $c_1=0,k=n\pi$.
Thus, for any initial condition, we have,
\begin{equation}
C(\zeta, T) = \sum_n a_n \exp\left(-n^2 \pi^2 T \right) \cos\left(n \pi\zeta\right) \sqrt{\frac{D - 2 \alpha L_0^2 T}{D}}
\end{equation}
This is exactly the same as Eq(11) in the reference with $f(T^\star)=\alpha L_0^2/(2\alpha L_0^2T^\star-D)$. All that is left now is to convert back to the old variables and put in an initial condition:
\begin{equation}
C(x,t) = \sum_n a_n \cos\left(\frac{n \pi x}{L(t)}\right)\exp\left(\frac{-n^2 \pi^2 D(1-\exp(-2\alpha t))}{2 \alpha L_0^2}\right) \exp(-\alpha t)
\end{equation}
This matches the result (13) of the paper.
Putting in the initial condition $C(x,0) = 1 + 0.2 \cos\left(\frac{m \pi x}{L_0}\right)$
\begin{equation}
C(x,t) = \exp(-\alpha t)\left[1+ 0.2\cos\left(\frac{m \pi x}{L_0} \exp(-\alpha t)\right)\exp\left(\frac{-m^2 \pi^2D}{2 \alpha L_0^2}(1-\exp(-2 \alpha t))\right)\right]
\end{equation}
\section{Exact solution for advection diffusion equation on a domain growing exponentially till $t=t_c$}
In this case, the map is:
\begin{equation}
x(s,t)=
\begin{cases}
s \exp(\alpha t), \quad t \leq t_c \\
s \exp(\alpha t_c), \quad t>t_c
\end{cases}
\end{equation}
The velocity is:
\begin{equation}
v(x,t) =
\begin{cases}
\alpha x, \quad t \leq t_c \\
0, \quad t>t_c
\end{cases}
\end{equation}
The domain length is:
\begin{equation}
L(t) =
\begin{cases}
L_0 \exp(\alpha t), \quad t \leq t_c \\
L_0 \exp(\alpha t_c), \quad t>t_c
\end{cases}
\end{equation}
The solution for $t \leq t_c$ is the same as obtained in the previous section. For $t > t_c$, the problem is one of solving the diffusion equation on a fixed domain of length $L = L_0 \exp(\alpha t_c)$ with the initial condition to be:
\begin{equation} \label{ic}
c(x, t_c) = \exp(-\alpha t_c)\left[1+ 0.2\cos\left(\frac{m \pi x}{L_0} \exp(-\alpha t_c)\right)\exp\left(\frac{-m^2 \pi^2D}{2 \alpha L_0^2}(1-\exp(-2 \alpha t_c))\right)\right]
\end{equation}
Going to the fourier domain, the diffusion equation is:
\begin{equation}
\frac{d c_k}{dt} = -D k^2 c_k
\end{equation}
\begin{equation}
\implies c_k(t) = c_k (t_c) \exp[-D k^2(t-t_c)]
\end{equation}
Now, $c_k(t_c)$ is just the Fourier transform of Eq(\ref{ic}). Thus,
\begin{equation}
c_k(t_c) = 2 \pi e^{-\alpha t_c} \left[\delta(k) + 0.1 e^{-\frac{D m^2}{2 \alpha L_0^2} \pi^2 (1 - e^{-2 \alpha t_c})} \left[\delta(k - m \pi/L) + \delta (k+ m \pi/L)\right]\right]
\end{equation}
where $L = L_0 \exp(\alpha t_c)$
Thus,
\begin{equation}
c_k(t) = \exp\left[-D k^2(t-t_c)\right] 2 \pi e^{-\alpha t_c} \left[\delta(k) + 0.1 e^{-\frac{D m^2}{2 \alpha L_0^2} \pi^2 (1 - e^{-2 \alpha t_c})} \left[\delta(k - m \pi/L) + \delta (k+ m \pi/L)\right]\right]
\end{equation}
The final solution is the inverse fourier transform of this, viz,
\begin{equation}
c(x,t) = \exp(-\alpha t_c) \left[ 1 + 0.2 \cos\left(\frac{m \pi x}{L}\right) \exp \left( -\frac{D m^2 \pi^2 (t - t_c)}{L^2} - \frac{D m^2 \pi^2 (1 - e^{-2 \alpha t_c})}{2 \alpha L_0^2}\right) \right]
\end{equation}
where again $L = L_0 \exp(\alpha t_c)$
\chapter*{Appendix: Visco-elastic models}
As the name suggests, viscoelastic materials have an elastic component and a viscous component. For the elastic component, the stress $\sigma_e$ is related to the strain $\epsilon_e$ as:
\begin{equation}
\sigma_e = E \epsilon_e
\end{equation}
where $E$ is the elastic modulus.\\
For the viscous component, the stress $\sigma_v$ is related to the strain rate $\dot \epsilon_v$ as:
\begin{equation}
\sigma_v = \eta \dot \epsilon_v
\end{equation}
where $\eta$ is the viscosity.
\section{Linear visco-elasticity}
Linear viscoelasticity is when the stress is separable in its elastic and viscous responses:
\begin{equation}
\sigma(t) = E \epsilon(t) + \int_0^t F(t-t^\prime) \epsilon(t^\prime) d t^\prime
\end{equation}
\section{Models of linear viscoleasticity}
\subsection{Maxwell model}
In this model, the elastic and viscous components(spring and dashpot, respectively) are in series with each other. We subject both of them to a stress $\sigma(t)$. The total strain of the combination is
\begin{equation}
\epsilon = \epsilon_e + \epsilon_v
\end{equation}
\begin{eqnarray}
\implies \dot \epsilon = \dot \epsilon_e + \dot \epsilon_v\\
= \frac{\dot \sigma}{E} + \frac{\sigma}{\eta}
\end{eqnarray}
Solving this for $\sigma(t)$,
\begin{equation}
\sigma(t) = \sigma(0) \exp(-Et/\eta) + \eta \dot \epsilon [1 - \exp(-Et/\eta)]
\end{equation}
As $t \to \infty$,
\begin{equation}
\sigma(t) = \eta \dot \epsilon
\end{equation}
That is, at long times, a Maxwell viscoelastic material behaves like a fluid.
\subsection{Kelvin-Voigt model}
In this model, the elastic and viscous components(spring and dashpot, respectively) are in parallel with each other. We subject both of them to equal strain $\epsilon = \epsilon_e = \epsilon_v$. The total stress of the combination is
\begin{equation}
\sigma = \sigma_e + \sigma_v
\end{equation}
\begin{eqnarray}
\implies \sigma = E \epsilon_ + \eta \dot \epsilon \\
\end{eqnarray}
Solving this for $\epsilon(t)$,
\begin{equation}
\epsilon(t) = \epsilon(0) \exp(-Et/\eta) + \frac{\sigma}{E}[1 - \exp(-Et/\eta)]
\end{equation}
As $t \to \infty$,
\begin{equation}
\epsilon(t) = \frac{\sigma}{\epsilon}
\end{equation}
That is, at long times, a Kelvin-Voigt viscoelastic material behaves like a solid.
\chapter*{Appendix: Proof of the Reynolds Transport Theorem}
From Leibniz theorem,
\begin{equation}
\begin{split}
\frac{d}{dt} \int_{\alpha(t)}^{\beta(t)} c(x,t) dx&= \int_{\alpha(t)}^{\beta(t)} \frac{\partial c}{\partial t} dx + c(\beta, t) \dot \beta - c(\alpha, t) \dot \alpha\\
&= \int_{\alpha(t)}^{\beta(t)} \frac{\partial c}{\partial t} dx + c(\beta, t) v(\beta,t) - c(\alpha, t) v(\alpha, t)
\end{split}
\end{equation}
Now, \begin{equation}
c(\beta, t) v(\beta,t) - c(\alpha, t) v(\alpha, t) = \int_{\alpha(t)}^{\beta(t)} \left[c \frac{\partial v}{\partial x} + v \frac{\partial c}{\partial x}\right] dx = \int_{\alpha(t)}^{\beta(t)} \frac{\partial}{\partial x}(cv) dx
\end{equation}
The first equality above can be seen just by integrating the expression on the RHS by parts.
Thus,
\begin{equation}
\frac{d}{dt} \int_{\alpha(t)}^{\beta(t)} c(x,t) dx = \int_{\alpha(t)}^{\beta(t)} \left[ \frac{\partial c}{\partial t} + \frac{\partial}{\partial x}(cv) \right]dx
\end{equation}
\bibliography{ref}
\end{document}
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or sign in to comment