Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
Jigyasa Watwani
/
growth-pattern-control
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Members
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit
04645954
authored
Mar 11, 2022
by
Jigyasa Watwani
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
growth equations without f and F
parents
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
172 additions
and
0 deletions
growth_eqns.py
growth_eqns.py
0 → 100644
View file @
04645954
import
dolfin
as
df
import
numpy
as
np
import
progressbar
df
.
set_log_level
(
df
.
LogLevel
.
ERROR
)
df
.
parameters
[
'form_compiler'
][
'optimize'
]
=
True
class
Growth
(
object
):
def
__init__
(
self
,
parameters
):
# read in parameters
for
key
in
parameters
:
setattr
(
self
,
key
,
parameters
[
key
])
# create mesh, mixed element and function space
self
.
mesh
=
df
.
IntervalMesh
(
self
.
resolution
,
0
,
self
.
system_size
)
conc_element
=
df
.
FiniteElement
(
'P'
,
self
.
mesh
.
ufl_cell
(),
1
)
mixed_element
=
df
.
MixedElement
([
conc_element
,
conc_element
,
conc_element
,
conc_element
])
# u, v, rho, c
# define function space with this mixed element
self
.
function_space
=
df
.
FunctionSpace
(
self
.
mesh
,
mixed_element
)
# define the reqd functions on this function space
self
.
f
=
df
.
Function
(
self
.
function_space
)
# f at current time
self
.
fminus1
=
df
.
Function
(
self
.
function_space
)
# f at t = -1
self
.
f0
=
df
.
Function
(
self
.
function_space
)
# f at t =0
def
advection
(
self
,
c
,
v
,
tc
):
return
(
df
.
inner
((
v
*
c
)
.
dx
(
0
),
tc
))
def
reaction_c
(
self
,
c
,
tc
):
return
df
.
inner
(
self
.
turnover_c
*
(
c
-
self
.
mean_concentration
),
tc
)
def
reaction_rho
(
self
,
rho
):
return
self
.
turnover_rho
*
rho
def
reaction_diffusion_c
(
self
,
c
,
tc
):
return
(
self
.
diffusion
*
df
.
inner
(
c
.
dx
(
0
),
tc
.
dx
(
0
))
+
self
.
reaction_c
(
c
,
tc
)
)
def
setup_initial_conditions
(
self
,
u0
,
rho0
,
c0
):
u0
=
df
.
interpolate
(
u0
,
self
.
function_space
.
sub
(
0
)
.
collapse
())
rho0
=
df
.
interpolate
(
rho0
,
self
.
function_space
.
sub
(
2
)
.
collapse
())
c0
=
df
.
interpolate
(
c0
,
self
.
function_space
.
sub
(
3
)
.
collapse
())
v0_function_space
=
df
.
FunctionSpace
(
self
.
mesh
,
'P'
,
1
)
v0
=
df
.
Function
(
v0_function_space
)
tv0
=
df
.
TestFunction
(
v0_function_space
)
v0form
=
(
df
.
inner
(
v0
,
tv0
)
+
self
.
youngs_modulus
*
df
.
inner
(
u0
.
dx
(
0
),
tv0
.
dx
(
0
))
-
self
.
b
*
df
.
inner
(
rho0
.
dx
(
0
),
tv0
)
)
*
df
.
dx
df
.
solve
(
v0form
==
0
,
v0
)
df
.
assign
(
self
.
f0
,
[
u0
,
v0
,
rho0
,
c0
])
self
.
fminus1
.
assign
(
self
.
f0
)
def
setup_weak_forms
(
self
):
uminus1
,
_
,
rhominus1
,
cminus1
=
df
.
split
(
self
.
fminus1
)
u0
,
_
,
rho0
,
c0
=
df
.
split
(
self
.
f0
)
u
,
v
,
rho
,
c
=
df
.
split
(
self
.
f
)
tu
,
tv
,
trho
,
tc
=
df
.
TestFunctions
(
self
.
function_space
)
uform
=
(
df
.
inner
((
u
-
u0
)
/
self
.
timestep
,
tu
)
-
df
.
inner
(
v
,
tu
)
)
vform
=
(
df
.
inner
(
v
,
tv
)
+
self
.
youngs_modulus
*
df
.
inner
(
u
.
dx
(
0
),
tv
.
dx
(
0
))
-
self
.
b
*
df
.
inner
(
rho
.
dx
(
0
),
tv
)
)
cform
=
(
df
.
inner
((
c
-
c0
)
/
self
.
timestep
,
tc
)
-
3
/
2
*
self
.
advection
(
c0
,
v
,
tc
)
+
1
/
2
*
self
.
advection
(
cminus1
,
v
,
tc
)
+
9
/
16
*
self
.
reaction_diffusion_c
(
c
,
tc
)
+
3
/
8
*
self
.
reaction_diffusion_c
(
c0
,
tc
)
+
1
/
16
*
self
.
reaction_diffusion_c
(
cminus1
,
tc
)
)
rhoform
=
(
df
.
inner
((
rho
-
rho0
)
/
self
.
timestep
,
trho
)
-
(
3
/
2
)
*
self
.
advection
(
rho0
,
v
,
trho
)
+
(
1
/
2
)
*
self
.
advection
(
rhominus1
,
v
,
trho
)
+
(
9
/
16
)
*
df
.
inner
(
self
.
reaction_rho
(
rho
),
trho
)
+
(
3
/
8
)
*
df
.
inner
(
self
.
reaction_rho
(
rho0
),
trho
)
+
(
1
/
16
)
*
df
.
inner
(
self
.
reaction_rho
(
rhominus1
),
trho
)
)
self
.
form
=
(
uform
+
vform
+
rhoform
+
cform
)
*
df
.
dx
def
solve
(
self
,
u0
=
None
,
rho0
=
None
,
c0
=
None
):
times
=
np
.
arange
(
0
,
self
.
maxtime
,
self
.
timestep
)
x
=
self
.
mesh
.
coordinates
()
u_array
=
np
.
zeros
((
len
(
times
),
len
(
x
)))
v_array
=
np
.
zeros_like
(
u_array
)
rho_array
=
np
.
zeros_like
(
u_array
)
c_array
=
np
.
zeros_like
(
u_array
)
self
.
setup_initial_conditions
(
u0
,
rho0
,
c0
)
self
.
setup_weak_forms
()
u
,
v
,
rho
,
c
=
self
.
f0
.
split
(
deepcopy
=
True
)
u_array
[
0
]
=
u
.
compute_vertex_values
(
self
.
mesh
)
v_array
[
0
]
=
v
.
compute_vertex_values
(
self
.
mesh
)
rho_array
[
0
]
=
rho
.
compute_vertex_values
(
self
.
mesh
)
c_array
[
0
]
=
c
.
compute_vertex_values
(
self
.
mesh
)
for
i
in
progressbar
.
progressbar
(
range
(
0
,
len
(
times
))):
df
.
solve
(
self
.
form
==
0
,
self
.
f
)
u
,
v
,
rho
,
c
=
self
.
f
.
split
(
deepcopy
=
True
)
u_array
[
i
]
=
u
.
compute_vertex_values
(
self
.
mesh
)
v_array
[
i
]
=
v
.
compute_vertex_values
(
self
.
mesh
)
rho_array
[
i
]
=
rho
.
compute_vertex_values
(
self
.
mesh
)
c_array
[
i
]
=
c
.
compute_vertex_values
(
self
.
mesh
)
self
.
fminus1
.
assign
(
self
.
f0
)
self
.
f0
.
assign
(
self
.
f
)
return
(
u_array
,
v_array
,
rho_array
,
c_array
)
if
__name__
==
'__main__'
:
import
json
import
matplotlib.pyplot
as
plt
from
matplotlib.widgets
import
Slider
with
open
(
'growth_parameters.json'
)
as
jsonFile
:
params
=
json
.
load
(
jsonFile
)
assert
(
params
[
'dimension'
]
==
1
)
g
=
Growth
(
params
)
u0
=
df
.
Expression
(
'0.5*cos(x[0]/2)'
,
degree
=
1
)
rho0
=
df
.
Expression
(
'1+0.2*cos(x[0])'
,
degree
=
1
)
c0
=
df
.
Expression
(
'cos(2*x[0])+cos(x[0])'
,
degree
=
1
)
(
u
,
v
,
rho
,
c
)
=
g
.
solve
(
u0
,
rho0
,
c0
)
x
=
g
.
mesh
.
coordinates
()
times
=
np
.
arange
(
0
,
g
.
maxtime
,
g
.
timestep
)
fig
,
(
axu
,
axv
,
axrho
,
axc
)
=
plt
.
subplots
(
4
,
1
,
sharex
=
True
,
figsize
=
(
8
,
6
))
axu
.
set_xlabel
(
r'$x$'
)
axu
.
set_ylabel
(
r'$u(x,t)$'
)
axv
.
set_ylabel
(
r'$v(x,t)$'
)
axrho
.
set_ylabel
(
r'$\rho(x,t)$'
)
axc
.
set_ylabel
(
r'$c(x,t)$'
)
axu
.
set_ylim
(
np
.
min
(
u
),
np
.
max
(
u
))
axv
.
set_ylim
(
np
.
min
(
v
),
np
.
max
(
v
))
axrho
.
set_ylim
(
np
.
min
(
rho
),
np
.
max
(
rho
))
axc
.
set_ylim
(
np
.
min
(
c
),
np
.
max
(
c
))
uplot
,
=
axu
.
plot
(
x
,
u
[
0
])
vplot
,
=
axv
.
plot
(
x
,
v
[
0
])
rhoplot
,
=
axrho
.
plot
(
x
,
rho
[
0
])
cplot
,
=
axc
.
plot
(
x
,
c
[
0
])
def
update
(
value
):
ti
=
np
.
abs
(
times
-
value
)
.
argmin
()
uplot
.
set_ydata
(
u
[
ti
])
vplot
.
set_ydata
(
v
[
ti
])
rhoplot
.
set_ydata
(
rho
[
ti
])
cplot
.
set_ydata
(
c
[
ti
])
plt
.
draw
()
sax
=
plt
.
axes
([
0.1
,
0.92
,
0.7
,
0.02
])
slider
=
Slider
(
sax
,
r'$t/\tau$'
,
min
(
times
),
max
(
times
),
valinit
=
min
(
times
),
valfmt
=
'
%3.1
f'
,
fc
=
'#999999'
)
slider
.
drawon
=
False
slider
.
on_changed
(
update
)
plt
.
show
()
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment