Commit f35fca01 by Souvik Jana

mathematica notebook added

parent 016ea2ac
Showing with 1716 additions and 0 deletions
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 13.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 72958, 1708]
NotebookOptionsPosition[ 62429, 1563]
NotebookOutlinePosition[ 63260, 1589]
CellTagsIndexPosition[ 63217, 1586]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["PERTURBATIVE GRAVITY CALCULATIONS", "Title",
CellChangeTimes->{{3.884835110820406*^9, 3.884835130988607*^9}, {
3.884835216415772*^9, 3.884835224404133*^9}, {3.8848403851082067`*^9,
3.884840412877943*^9}},ExpressionUUID->"16c4c7ad-fbf6-4e75-889b-\
8bf5b6aeee14"],
Cell["Tutorial 4: Gravitational Wave Astrophysics course", "Subtitle",
CellChangeTimes->{{3.8849570126067953`*^9,
3.884957024035838*^9}},ExpressionUUID->"2fb7fc3c-72ce-464e-9c08-\
42dc526b3706"],
Cell[CellGroupData[{
Cell["Introduction", "Section",
CellChangeTimes->{{3.884866286242704*^9, 3.884866295264806*^9},
3.884946287410289*^9},ExpressionUUID->"ed49cd83-5b9d-4c09-abce-\
60958bffab12"],
Cell[TextData[{
StyleBox[ButtonBox["xAct`",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://www.xact.es/"], None},
ButtonNote->"http://www.xact.es/"],
FontFamily->"Courier"],
StyleBox["is a collection of packages, organized hierarchically.",
FontFamily->"TeX Gyre Pagella"],
StyleBox["\n",
FontFamily->"Courier"],
StyleBox[ButtonBox["xPert`",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://www.xact.es/xPert/"], None},
ButtonNote->"http://www.xact.es/xPert/"],
FontFamily->"Courier"],
StyleBox[" is a package for efficient construction and manipulation of \
high-order perturbations of the curvature tensors of a Riemannian manifold. \
Its main application is Perturbation Theory in General Relativity.",
FontFamily->"TeX Gyre Bonum Math"],
"\n",
StyleBox["xPert` ",
FontFamily->"Courier"],
StyleBox["needs the underlying package",
FontFamily->"TeX Gyre DejaVu Math"],
StyleBox[" ",
FontFamily->"Shadows Into Light Two"],
StyleBox[ButtonBox["xTensor`",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://xact.es/xTensor/"], None},
ButtonNote->"http://xact.es/xTensor/"],
FontFamily->"Courier"],
StyleBox[" ",
FontFamily->"Courier"],
StyleBox["for abstract tensor manipulations.\n",
FontFamily->"TeX Gyre DejaVu Math"],
StyleBox[ButtonBox["xTras`",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://www.xact.es/xtras/"], None},
ButtonNote->"http://www.xact.es/xtras/"],
FontFamily->"Courier"],
StyleBox[" ",
FontFamily->"Courier"],
StyleBox["is required t",
FontFamily->"TeX Gyre DejaVu Math"],
StyleBox["o fix the background metric as Minkowski. ",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.8848661517835217`*^9, 3.8848661604757433`*^9}, {
3.884866257332738*^9, 3.884866269384557*^9}, {3.884877757777568*^9,
3.8848779252293367`*^9}, {3.8848779655381193`*^9,
3.8848779665814962`*^9}, {3.8848780511593018`*^9, 3.88487806591621*^9}, {
3.884878103317875*^9, 3.884878109640395*^9}, {3.884878267708603*^9,
3.884878267880322*^9}, 3.884878483788472*^9, {3.8849126271852407`*^9,
3.884912643950151*^9}, {3.8850006396438723`*^9, 3.8850006554864187`*^9}, {
3.8850006975021267`*^9, 3.885000746173485*^9}, {3.885000959324028*^9,
3.88500097606672*^9}, {3.885010171769676*^9, 3.885010171773984*^9}, {
3.8850102532777777`*^9, 3.8850102989519377`*^9}, {3.885012615084203*^9,
3.885012615448307*^9}},ExpressionUUID->"b531869a-08f0-44d9-8ff9-\
944b8cdc8f7d"]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[StyleBox["Loading the packages", "Section"]], "Section",
CellChangeTimes->{{3.884835312233243*^9, 3.884835318059031*^9},
3.884946288660326*^9,
3.88495705965132*^9},ExpressionUUID->"1011d24e-9699-483a-961c-\
a9c7d6aa03d0"],
Cell[TextData[StyleBox["Load the packages from the default directory, for \
example $HOME/.Mathematica/Application/xAct",
FontFamily->"TeX Gyre DejaVu Math"]], "Text",
CellChangeTimes->{{3.8848353391131363`*^9, 3.884835366984775*^9}, {
3.884861032532948*^9, 3.884861035411989*^9}, {3.884957053473324*^9,
3.884957074929068*^9}, 3.88500105139493*^9, {3.885010350885908*^9,
3.885010363610298*^9}},ExpressionUUID->"f88ced20-8697-43cc-82b1-\
11e9078f084b"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.88483538101033*^9, 3.8848353875163307`*^9}, {
3.8848354337297583`*^9, 3.884835467118732*^9}, 3.884839797135007*^9, {
3.884860344217823*^9, 3.884860355936778*^9}, {3.885001032858625*^9,
3.885001039122848*^9}, 3.885213606317752*^9},
CellLabel->"In[1]:=",ExpressionUUID->"05a28a2e-f912-48f1-8b20-0dc3c55bdd92"]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[StyleBox["Defining a manifold and a metric ", "Section"]], \
"Section",
CellChangeTimes->{{3.88483886566749*^9, 3.884838873240838*^9},
3.884839007129225*^9, 3.884946289980142*^9, {3.8850012151991653`*^9,
3.8850012247359753`*^9}},ExpressionUUID->"93408548-a522-4a1e-86e0-\
389db23d514a"],
Cell[TextData[{
StyleBox["For the purpose of this tutorial, we shall think of a \
(differentiable) ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[ButtonBox["manifold",
BaseStyle->"Hyperlink",
ButtonData->{
URL["https://en.wikipedia.org/wiki/Differentiable_manifold"], None},
ButtonNote->"https://en.wikipedia.org/wiki/Differentiable_manifold"],
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[", ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["M",
FontFamily->"TeX Gyre Bonum Math",
FontWeight->"Bold"],
StyleBox[", as a topological space in which ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[ButtonBox["Principle of Equivalence",
BaseStyle->"Hyperlink",
ButtonData->{
URL["https://en.wikipedia.org/wiki/Equivalence_principle"], None},
ButtonNote->"https://en.wikipedia.org/wiki/Equivalence_principle"],
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[" is valid, i.e., locally Minkowski. Many local regions of ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["M",
FontFamily->"TeX Gyre Bonum Math",
FontWeight->"Bold"],
StyleBox[" are patched up by piecing together locally-Minkowski regions \
using differentiable functions. ",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884839142384515*^9, 3.884839209015052*^9}, {
3.884839240585724*^9, 3.884839474112876*^9}, {3.88486105132859*^9,
3.8848610871143436`*^9}, {3.88498787119937*^9, 3.8849878814344473`*^9}, {
3.8850104277141*^9, 3.8850104277168694`*^9}, {3.885010588535905*^9,
3.88501058853968*^9}, {3.88501289190832*^9, 3.8850129033233423`*^9}, {
3.8850129468983717`*^9, 3.8850129503902483`*^9}, {3.885084726570259*^9,
3.8850847275722923`*^9}, {3.885084759700984*^9,
3.885084760151636*^9}},ExpressionUUID->"9c43b05f-f2ef-46c9-a670-\
c32f9f2b20c3"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Dimension", " ", "of", " ", "the", " ", "spacetime"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8848395225312567`*^9, 3.884839530465794*^9}, {
3.8849457267470512`*^9, 3.884945729525358*^9}, {3.884987813879525*^9,
3.884987823407178*^9}, {3.885013530555646*^9, 3.885013531602565*^9}, {
3.885213621431356*^9, 3.885213634436346*^9}},
CellLabel->"In[2]:=",ExpressionUUID->"d43d5aa6-5f38-41ee-8e55-88be6499823c"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Use", " ", "DefManifold", " ", "to", " ", "define", " ", "the", " ",
"manifold"}], " ", "*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8848395065398273`*^9, 3.884839557073833*^9}, {
3.884922656977125*^9, 3.8849226677827473`*^9}, {3.8849570823266087`*^9,
3.8849570838498507`*^9}, {3.884987826555395*^9, 3.8849878442277527`*^9}, {
3.88501353358365*^9, 3.8850135350497828`*^9}, 3.885213631066698*^9},
CellLabel->"In[3]:=",ExpressionUUID->"71e84643-86b0-40a0-825c-4debdb4beda2"],
Cell[TextData[{
StyleBox["Note that, defining a manifold automatically defines a tangent \
vector space.\n\nDefine a metric field ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["g ",
FontFamily->"TeX Gyre Bonum Math",
FontWeight->"Bold"],
StyleBox["on this manifold, with negative determinant and associated \
covariant derivative CD. \nWe shall use the convention :",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[" ", "NaturalLanguageInput",
FontFamily->"TeX Gyre Bonum Math",
FontSize->15],
StyleBox["[-\[Alpha]]", "CodeText",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[" for a covariant index and ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["[\[Alpha]]", "CodeText",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[" for a contravariant index.", "NaturalLanguageInput",
FontFamily->"TeX Gyre Bonum Math",
FontSize->15]
}], "Text",
CellChangeTimes->{
3.8850012412739363`*^9, {3.885012694806768*^9, 3.885012698308625*^9}, {
3.885012992578274*^9, 3.885013065308855*^9}, {3.885013209553254*^9,
3.885013212013472*^9},
3.8850847653359528`*^9},ExpressionUUID->"54e70b7b-90c2-46d0-aa24-\
59a5c80d79e1"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
RowBox[{
"Define", " ", "a", " ", "metric", " ", "with", " ", "signature"}], " ",
"-",
RowBox[{"1", " ", "using", " ", "DefMetric"}]}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8850132718440866`*^9, 3.885013274974597*^9}, {
3.8850135403273687`*^9, 3.8850135411478148`*^9}, 3.885213649345028*^9},
CellLabel->"In[4]:=",ExpressionUUID->"f241b01c-b979-466d-a813-c8fa341136c2"],
Cell[TextData[StyleBox["As can be seen, a bunch of quantities including the \
Riemann tensor, Ricci tensor, etc. are automatically defined as soon as we \
define the metric.",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.885013108087818*^9,
3.885013198751267*^9}},ExpressionUUID->"de7c8004-7c68-4606-8666-\
ec06de8fd43f"]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[StyleBox["Curvature tensors and Christoffel symbol", \
"Section"]], "Section",
CellChangeTimes->{{3.884839976568688*^9, 3.884840003765033*^9}, {
3.8848401397681513`*^9, 3.884840148209196*^9}, {3.8848404312347*^9,
3.884840448845828*^9}, 3.884946293146699*^9,
3.885002176808303*^9},ExpressionUUID->"6905e0ef-33cd-4337-ae11-\
1ea40d821b4b"],
Cell[TextData[StyleBox["By default, curvature tensors show the name of the \
derivative they are associated to:",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.884840177913658*^9,
3.8848401980366497`*^9}},ExpressionUUID->"20791885-6c3f-41bb-8a6f-\
1f3e8efa6fcc"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Display", " ", "the", " ", "Riemann", " ", "tensor"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8848402052461576`*^9, 3.884840245100526*^9}, {
3.884840280195359*^9, 3.884840294574544*^9}, {3.884840626723077*^9,
3.884840628451305*^9}, {3.884958997552298*^9, 3.8849589984527617`*^9}, {
3.884987939411264*^9, 3.884987948392783*^9}, {3.885013544235227*^9,
3.885013546116289*^9}, 3.8852136647070827`*^9},
CellLabel->"In[5]:=",ExpressionUUID->"1770d4b1-101d-404f-bfee-bb7986235bba"],
Cell[TextData[{
StyleBox["Because we shall work with a single covariant derivative operator, \
we can choose a simpler output for the geometric tensors. ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["xTensor`",
FontFamily->"Courier"],
StyleBox[" has its own type system and registration mechanism, that keeps \
track of all that has been declared during a session, and the mutual \
relations. The same symbol cannot be used to define two different objects. \
However two different symbols can be typeset in the same way (say both the \
Riemann and Ricci tensors can be typeset as ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["R",
FontFamily->"TeX Gyre Bonum Math",
FontSlant->"Italic"],
StyleBox["). \nThe ^= notation denotes an \[OpenCurlyDoubleQuote]upvalue\
\[CloseCurlyDoubleQuote]. ",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884840326492112*^9, 3.884840363013981*^9}, {
3.884912206239367*^9, 3.884912210257708*^9}, {3.884914811148776*^9,
3.884914856647202*^9}},ExpressionUUID->"aa2b4a6f-eccb-4546-b87d-\
0f5252f783b5"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Typeset", " ", "the", " ", "Curvature", " ", "tensors", " ", "using", " ",
"PrintAs"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"PrintAs", "[", "RiemannCD", "]"}], "^=", "\"\<R\>\""}], ";"}],
"\n",
RowBox[{
RowBox[{
RowBox[{"PrintAs", "[", "RicciCD", "]"}], "^=", "\"\<R\>\""}], ";"}],
"\n",
RowBox[{
RowBox[{
RowBox[{"PrintAs", "[", "RicciScalarCD", "]"}], "^=", "\"\<R\>\""}],
";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"PrintAs", "[", "ChristoffelCD", "]"}], "^=",
"\"\<\[CapitalGamma]\>\""}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"PrintAs", "[", "EinsteinCD", "]"}], "^=", "\"\<G\>\""}],
";"}]}]}]], "Input",
CellChangeTimes->{{3.884987960607943*^9, 3.8849879741492233`*^9}, {
3.884988075177381*^9, 3.884988077930792*^9}, {3.885013549268167*^9,
3.8850135507393503`*^9}},
CellLabel->"In[6]:=",ExpressionUUID->"e1005954-8073-4add-873f-8e6d0d0eeb00"],
Cell[TextData[StyleBox["So that now",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.884840467757595*^9,
3.8848404698284616`*^9}},ExpressionUUID->"9e104bbf-f346-4634-a60e-\
82f0e4f32a02"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "Riemann", " ", "tensor", " ", "after", " ",
"typesetting"}], " ", "*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.884840473031266*^9, 3.8848404827344627`*^9}, {
3.884840621728561*^9, 3.884840624054222*^9}, {3.884987982440153*^9,
3.884988000068379*^9}, {3.885013552824644*^9, 3.8850135539062157`*^9},
3.88521367068288*^9},
CellLabel->"In[11]:=",ExpressionUUID->"b521d2a1-9b4f-4c43-b0d6-38c60637931e"],
Cell[TextData[{
StyleBox["Check how the Riemann tensor is defined from the Christoffel \
symbols using ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["RiemannToChristoffel",
FontFamily->"Courier"],
StyleBox[".",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884840562107671*^9, 3.884840592859359*^9}, {
3.885013398481429*^9, 3.885013430718487*^9}, {3.885014027089479*^9,
3.8850140274850597`*^9}},ExpressionUUID->"158605d3-7d8f-4df7-afb5-\
a31198afc0b7"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Make", " ", "use", " ", "of", " ", "%", " ", "sign"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.884840602316243*^9, 3.8848406087777977`*^9}, {
3.884840644258705*^9, 3.8848406516904087`*^9}, {3.8848407036710176`*^9,
3.8848407332679157`*^9}, {3.884914391193907*^9, 3.884914441544153*^9}, {
3.8849880102026167`*^9, 3.8849880531969976`*^9}, {3.8850134619249687`*^9,
3.885013464146249*^9}, {3.8850135563243923`*^9, 3.885013558178993*^9},
3.885213677678883*^9},
CellLabel->"In[12]:=",ExpressionUUID->"81811a93-601f-4597-a378-d98b9b2c591e"],
Cell[TextData[{
StyleBox["Similarly, check how the Christoffel symbols are defined from the \
metric and its derivatives using ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ChristoffelToMetric",
FontFamily->"Courier"]
}], "Text",
CellChangeTimes->{{3.8848407498493433`*^9, 3.884840773776738*^9}, {
3.8850134755302677`*^9, 3.885013504271399*^9},
3.8850140299172897`*^9},ExpressionUUID->"18c60c9e-4cf5-4fa7-80b9-\
b12a7a938c86"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Make", " ", "use", " ", "of"}], " ", "//"}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8848408356923428`*^9, 3.884840871756229*^9}, {
3.8849881076431303`*^9, 3.8849881132436457`*^9}, {3.88501355958599*^9,
3.8850135605748587`*^9}, 3.885213684025405*^9},
CellLabel->"In[13]:=",ExpressionUUID->"71fcb797-01d5-476c-aec8-0b36101c2a16"],
Cell[TextData[{
StyleBox["Using ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["EinsteinToRicci ",
FontFamily->"Courier"],
StyleBox["check the definition of the Einstein tensor",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884840973801306*^9, 3.884840991612666*^9}, {
3.885013645563705*^9, 3.8850137435994253`*^9},
3.885014023084791*^9},ExpressionUUID->"774d69ad-046d-463b-8a41-\
76e3e2dbd649"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "the", " ", "Einstein", " ", "tensor", " ", "in", " ",
"terms", " ", "of", " ", "the", " ", "Ricci", " ", "tensors"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.88498814240982*^9, 3.884988156533515*^9}, {
3.8850136371648207`*^9, 3.8850136393523827`*^9}, 3.8852136893299007`*^9},
CellLabel->"In[14]:=",ExpressionUUID->"7cf35e74-ea09-46a8-8660-dcb0a9152373"]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[StyleBox["Defining metric perturbation", "Section"]], "Section",
CellChangeTimes->{{3.884841049739797*^9, 3.8848410524542027`*^9}, {
3.8848410939058733`*^9, 3.8848411023779182`*^9}, 3.884858508331636*^9, {
3.884916202747191*^9, 3.8849162037448053`*^9}, 3.884946295116935*^9, {
3.885001493925358*^9,
3.885001501250948*^9}},ExpressionUUID->"1bacba40-3c8e-4f10-a605-\
b63b0db06f04"],
Cell[TextData[{
StyleBox["After defining the background metric using ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["xTensor`",
FontFamily->"Courier"],
StyleBox[", we now define the perturbative structure with the command ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["DefMetricPerturbation",
FontFamily->"Courier"],
StyleBox[" of ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["xPert`",
FontFamily->"Courier"],
StyleBox[".\n",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["Define the metric perturbation as ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["h ",
FontFamily->"Courier"],
StyleBox["and the perturbation order parameter as",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[" ",
FontFamily->"Courier"],
StyleBox["\[Epsilon]. ",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884841115476968*^9, 3.8848411245036993`*^9}, {
3.884841850615172*^9, 3.8848418850843678`*^9}, {3.884858314404689*^9,
3.88485832685861*^9}, 3.884878503839304*^9, {3.8848785369770947`*^9,
3.884878538301622*^9}, {3.884878693046835*^9, 3.8848787466716843`*^9}, {
3.8850016035986233`*^9, 3.8850016508387547`*^9}, 3.885001699319092*^9, {
3.885013812207836*^9, 3.885013914416473*^9}, {3.8850140183115396`*^9,
3.885014019018818*^9}},ExpressionUUID->"899e4fd3-f001-4651-99c6-\
e1a5c2443d88"],
Cell[BoxData[""], "Input",
CellChangeTimes->{3.884841826738628*^9, 3.884866736649538*^9,
3.885213694927868*^9},
CellLabel->"In[15]:=",ExpressionUUID->"9711995f-2d1d-41f0-bc0f-563b2272ae27"]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[StyleBox["Curvature tensors in linearized theory about flat \
metric", "Section"]], "Section",
CellChangeTimes->{{3.8848584939190063`*^9, 3.884858511247962*^9},
3.8849462973849583`*^9, {3.88500245106557*^9, 3.885002472139699*^9}, {
3.885002530115419*^9, 3.885002534616315*^9}, {3.885008032733675*^9,
3.885008035609095*^9}},ExpressionUUID->"b9a82a02-c84f-4826-83cb-\
afc2fad30eb1"],
Cell[TextData[{
StyleBox["Perturbed",
FontFamily->"Courier"],
" ",
StyleBox["command can be used to view the perturbation of an object up to \
nth order in \[Epsilon].",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.885014129880333*^9, 3.88501416985466*^9}, {
3.885014243166313*^9,
3.8850142530093613`*^9}},ExpressionUUID->"221be80c-86b0-4863-b2ec-\
c2bc2259ec06"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Display", " ", "the", " ", "linear"}], "-",
RowBox[{
"order", " ", "perturbation", " ", "of", " ", "the", " ", "metric"}]}],
" ", "*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8848585865982227`*^9, 3.884858608759074*^9}, {
3.8848587224147243`*^9, 3.884858722656098*^9}, {3.88485938235491*^9,
3.8848593881721973`*^9}, {3.8849890266297483`*^9, 3.884989048594523*^9}, {
3.88500845112707*^9, 3.885008469294985*^9}, {3.885014200781261*^9,
3.885014218196656*^9}, 3.885213699931499*^9},
CellLabel->"In[16]:=",ExpressionUUID->"6f5d6a95-6b13-46ca-98e8-bed77c72d4a3"],
Cell[TextData[{
StyleBox["The perturbation above has been defined only for the metric with \
covariant indices. The perturbations of the inverse metric (and all other \
contravariant quantities) are handled by",
FontFamily->"TeX Gyre Bonum Math"],
" ",
StyleBox["ExpandPerturbation",
FontFamily->"Courier"],
", ",
StyleBox["which makes use of exact formulae to expand the perturbations of \
any geometric object.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884858779681438*^9, 3.8848587877575407`*^9}, {
3.884858819967702*^9,
3.8848589218966827`*^9}},ExpressionUUID->"23a5b391-8df2-4523-be7d-\
ec64887611b2"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "the", " ", "linearized", " ", "perturbation", " ", "of",
" ", "the", " ", "inverse", " ", "metric"}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.884858660451878*^9, 3.8848586682695417`*^9}, {
3.884858726821618*^9, 3.884858727035568*^9}, {3.8849622032044992`*^9,
3.88496221423201*^9}, {3.884989060234014*^9, 3.88498907908239*^9}, {
3.8850084752292843`*^9, 3.8850084799492903`*^9}, {3.885014336268314*^9,
3.885014345324685*^9}, 3.8852137038480673`*^9},
CellLabel->"In[17]:=",ExpressionUUID->"698815bd-601f-4fc6-9a40-66e70dcf0c6d"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Use", " ", "ExpandPerturbation", " ", "to", " ", "display", " ", "in",
" ", "terms", " ", "of", " ", "the", " ", "perturbation", " ",
"parameter"}], " ", "*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8848586744613113`*^9, 3.884858678286227*^9}, {
3.884962216952814*^9, 3.884962232565105*^9}, 3.8849622627024097`*^9, {
3.884989095196541*^9, 3.884989122997696*^9}, {3.8850143500565863`*^9,
3.88501435169699*^9}, 3.885213707159116*^9},
CellLabel->"In[18]:=",ExpressionUUID->"ef70df9e-4230-4419-98e0-2f526ac6f5d2"],
Cell[TextData[{
StyleBox["To display the nth order perturbation term, we use",
FontFamily->"TeX Gyre Bonum Math"],
" ",
StyleBox["Perturbation",
FontFamily->"Courier"],
StyleBox[".",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884858945468566*^9, 3.884859027619825*^9},
3.8850027046536703`*^9, {3.885014315735259*^9,
3.8850143233441257`*^9}},ExpressionUUID->"6618013a-13d6-43b5-8302-\
b3a5b81e5f78"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "only", " ", "the", " ", "1", "st", " ", "order", " ",
"perturbation", " ", "term", " ", "of", " ", "the", " ", "metric"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.884859039906218*^9, 3.884859067418832*^9}, {
3.884989133331237*^9, 3.884989146838271*^9}, {3.885008492351001*^9,
3.8850085022496243`*^9}, 3.8850128107159643`*^9, {3.885014355174515*^9,
3.885014370156023*^9}, 3.885213715050398*^9},
CellLabel->"In[19]:=",ExpressionUUID->"f722540b-c19e-4a31-8b3e-22ffcf1a1e2c"],
Cell[TextData[{
StyleBox["Not only can we view the perturbation of the metric but also of \
the Christoffel symbols and the Curvature tensors. \nIn order to obtain the \
perturbation of the Curvature tensors, we write them in terms of the metric \
and its partial derivatives and apply ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ExpandPerturbation.",
FontFamily->"Courier"],
StyleBox["\nTo ensure that the expressions are evaluated in the flat \
background, we use ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ToFlat.",
FontFamily->"Courier"]
}], "Text",
CellChangeTimes->{
3.885002348485387*^9, {3.885002633941455*^9, 3.885002656413747*^9}, {
3.885003482366107*^9,
3.885003578160152*^9}},ExpressionUUID->"8275f1dd-7831-4f20-b076-\
f1f782dfe5c1"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "the", " ", "Christoffel", " ", "symbol", " ", "upto", " ",
"linear", " ", "order", " ", "perturbation", " ", "in", " ", "flat", " ",
"background", " ", "using", " ", "ToFlat"}], "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885002663351892*^9, 3.88500276491615*^9}, {
3.885008519264843*^9, 3.885008519508008*^9}, {3.885014458064966*^9,
3.885014469162444*^9}, {3.8850145199430017`*^9, 3.88501453427324*^9},
3.8852137228083887`*^9},ExpressionUUID->"bb890f00-f503-42df-95db-\
a2469cfdb169"],
Cell[TextData[{
StyleBox["The metric",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[" g",
FontFamily->"TeX Gyre Bonum Math",
FontWeight->"Bold"],
StyleBox[" above can be thought of as the Minkowski metric. \nCompute the \
Riemann tensor in linearized theory. Rather than using ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ToFlat, ",
FontFamily->"Courier"],
StyleBox["another option is to use ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ExpandFlat.",
FontFamily->"Courier"],
StyleBox[" Verify the output with your answer to Q1 in tut1. ",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{
3.885002436480506*^9, {3.885002794486249*^9, 3.885002878237937*^9}, {
3.885003618692051*^9, 3.885003628702856*^9}, 3.885014435177718*^9, {
3.88501449636823*^9,
3.885014497248169*^9}},ExpressionUUID->"467049de-db31-4d88-a9a4-\
b5019739a329"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "the", " ", "Riemann", " ", "tensor", " ", "upto", " ",
"linear", " ", "order", " ", "perturbation", " ", "in", " ", "flat", " ",
"background", " ", "using", " ", "ExpandFlat"}], "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885002948494206*^9, 3.885002964862495*^9}, {
3.885008525183916*^9, 3.885008525561327*^9}, {3.885014447817245*^9,
3.885014462113763*^9}, {3.885014503964596*^9, 3.8850145166929007`*^9},
3.8852137354491577`*^9},ExpressionUUID->"3417821d-1b50-4dc5-8616-\
b8027817ded9"],
Cell[TextData[{
StyleBox["Notice that, ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ToFlat",
FontFamily->"Courier"],
StyleBox[" acts after the ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["Perturbation",
FontFamily->"Courier"],
StyleBox[" operator but ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ExpandFlat ",
FontFamily->"Courier"],
StyleBox["does not require that.\nCompute the Ricci and the Einstein tensors \
in linearized theory. Verify the output with your answer to Q2 in tut1.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{
3.8850025429799023`*^9, {3.885002640321896*^9, 3.885002649072596*^9},
3.885002831482532*^9, 3.885002911034191*^9, {3.885003669877174*^9,
3.8850036777393837`*^9}, {3.885012856265189*^9, 3.885012856414503*^9}, {
3.885014481159186*^9, 3.885014490601265*^9}, {3.8850145601437283`*^9,
3.885014667589511*^9}},ExpressionUUID->"ee14279e-1753-4237-95e5-\
cddc8d008b64"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "the", " ", "Ricci", " ", "tensor", " ", "upto", " ",
"first", " ", "order", " ", "in", " ", "flat", " ", "background"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885003002066174*^9, 3.885003051504236*^9},
3.885003095606883*^9, {3.8850039345212812`*^9, 3.885003935663292*^9}, {
3.885008530213255*^9, 3.885008530353785*^9}, {3.885014677101755*^9,
3.8850146787971983`*^9},
3.8852137403137197`*^9},ExpressionUUID->"22d930eb-7072-404f-a0df-\
c74bdd337287"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "the", " ", "Ricci", " ", "scalar", " ", "upto", " ",
"first", " ", "order", " ", "in", " ", "flat", " ", "background"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885003192011024*^9, 3.885003230340558*^9}, {
3.8850036903479033`*^9, 3.885003695794788*^9}, {3.885003899647554*^9,
3.88500391747756*^9}, {3.885008534803012*^9, 3.885008534962392*^9}, {
3.885014716785042*^9, 3.885014719757032*^9},
3.885213743878726*^9},ExpressionUUID->"79441b12-b2df-4be1-b500-\
e4dabc82ab62"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "the", " ", "Einstein", " ", "tensor", " ", "upto", " ",
"first", " ", "order", " ", "in", " ", "flat", " ", "background"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8850030922474613`*^9, 3.885003148651908*^9}, {
3.885003241191902*^9, 3.88500324282782*^9}, {3.8850036993958683`*^9,
3.8850037040188913`*^9}, {3.885003852614039*^9, 3.8850038919936333`*^9},
3.8850039759330397`*^9, {3.885008538968623*^9, 3.8850085395233803`*^9}, {
3.885014727540008*^9, 3.885014729600469*^9},
3.8852137475198193`*^9},ExpressionUUID->"124a6ad6-4c23-4639-b5a2-\
312239b733e3"]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[StyleBox["Curvature tensors about a perturbed non-flat \
background metric", "Section"]], "Section",
CellChangeTimes->{{3.8848622047056723`*^9, 3.884862214786113*^9}, {
3.884862255888465*^9, 3.8848622597058783`*^9}, {3.8850080547038317`*^9,
3.885008071222827*^9}, {3.885008130602063*^9, 3.885008137505271*^9}, {
3.88500832978496*^9,
3.885008341430917*^9}},ExpressionUUID->"ab2e9c18-f157-48b4-a139-\
df1e4cbea159"],
Cell[TextData[{
StyleBox["Associated with each order of perturbation of the metric, are \
different orders of ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["h",
FontFamily->"Courier"],
StyleBox[". Each of these are denoted by Label Indices as ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["LI[order]",
FontFamily->"Courier"],
StyleBox[". Since we are interested only in the first order ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["h",
FontFamily->"Courier"],
StyleBox[", we define a Background Field Method, which will ensure that only \
nonzero perturbation to the metric tensor is the one that is first order in ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["h",
FontFamily->"Courier"],
StyleBox[". This can be implemented wherever required.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.885001735777709*^9, 3.885001791703446*^9}, {
3.8850018252257442`*^9, 3.885001977049684*^9}, {3.885002015099771*^9,
3.885002036638914*^9}, {3.885002103846447*^9, 3.8850021316216297`*^9},
3.885010766294428*^9, {3.885014775549171*^9,
3.885014818524218*^9}},ExpressionUUID->"8677752d-624e-495f-81cf-\
2d47ee26556b"],
Cell[BoxData[
RowBox[{
RowBox[{"bgf", "=",
RowBox[{
RowBox[{"h", "[",
RowBox[{
RowBox[{"LI", "[", "order_", "]"}], ",", "__"}], "]"}],
"\[RuleDelayed]",
RowBox[{"0", "/;",
RowBox[{"order", ">", "1"}]}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.8850017284548807`*^9, 3.885001729902356*^9}, {
3.8850017956994553`*^9, 3.885001814501029*^9}},
CellLabel->"In[26]:=",ExpressionUUID->"654ff8ee-9b51-4dc1-9a67-126b661da5c6"],
Cell[TextData[{
StyleBox["Compute the explicit expressions of higher order perturbations of \
the Ricci tensor. ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["Verify the output with your answer to Q4 in tut2.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884866073138763*^9, 3.884866117465519*^9}, {
3.8850083012582283`*^9, 3.8850083232299547`*^9}, {3.885009007291044*^9,
3.885009071319249*^9},
3.8850148419476757`*^9},ExpressionUUID->"4b05e6d2-3344-4daf-89ac-\
02ec358b3a26"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Get", " ", "the", " ", "unperturbed", " ", "Ricci", " ", "tensor"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8849860555205183`*^9, 3.884986085265896*^9}, {
3.8849876305857964`*^9, 3.88498765670711*^9}, {3.8849892637322598`*^9,
3.884989336485875*^9}, {3.8850091156031446`*^9, 3.885009144269493*^9}, {
3.885009199057263*^9, 3.885009200401009*^9}, {3.885009336250575*^9,
3.885009346070129*^9}, {3.885014855100567*^9, 3.88501485847721*^9}, {
3.8850850659020557`*^9, 3.8850851440280933`*^9},
3.885213755425069*^9},ExpressionUUID->"22a2ede4-8513-4e1e-b6e0-\
4285eb26b51b"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Get", " ", "the", " ", "first", " ", "order", " ", "perturbation", " ",
"term", " ", "in", " ", "Ricci"}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.884985846997643*^9, 3.884985924024393*^9}, {
3.884985970045774*^9, 3.884986003705257*^9}, {3.884987668162566*^9,
3.884987670429159*^9}, {3.884987732742255*^9, 3.884987752017778*^9}, {
3.8849893430134*^9, 3.884989377736546*^9}, {3.884989438807329*^9,
3.884989441684196*^9}, {3.885009193894743*^9, 3.8850091970834627`*^9}, {
3.885009238690556*^9, 3.88500932013363*^9}, {3.885009363024508*^9,
3.885009394649275*^9}, {3.885085159349832*^9, 3.8850852126171417`*^9},
3.885213759379983*^9},ExpressionUUID->"69af80ac-03b1-411b-b99f-\
3bd5f17df8c5"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Get", " ", "the", " ", "second", " ", "order", " ", "perturbation", " ",
"term", " ", "in", " ", "Ricci"}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.884989456072956*^9, 3.884989468621854*^9}, {
3.885009190656687*^9, 3.8850091919946423`*^9}, {3.88500955530645*^9,
3.8850095592101593`*^9},
3.885213765326827*^9},ExpressionUUID->"ca2abc19-8851-4eea-94a1-\
dd72355b97eb"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Remove", " ", "the", " ", "LI"}], ">",
RowBox[{"1", " ", "perturbation", " ", "terms", " ", "in", " ", "h"}]}],
" ", "*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.7505490909047956`*^9, 3.750549095512829*^9}, {
3.752048774705641*^9, 3.752048961548612*^9}, {3.7610440631450033`*^9,
3.761044064658997*^9}, {3.884990124834599*^9, 3.884990128717546*^9},
3.884990227007484*^9, {3.884990272562689*^9, 3.884990318289212*^9}, {
3.885009183479638*^9, 3.8850091882281933`*^9}, {3.885009535847559*^9,
3.885009571233719*^9},
3.8852137704423447`*^9},ExpressionUUID->"8293e21a-3036-45f6-8d36-\
21cd0017c68c"]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
Gauge invariance of Riemann tensor linearized over flat metric\
\>", "Section",
CellChangeTimes->{{3.884921103492958*^9, 3.8849211164588737`*^9}, {
3.884930023791937*^9, 3.884930026763686*^9}, 3.884960034497631*^9, {
3.884990796343252*^9, 3.884990809462638*^9}, 3.885009985807192*^9, {
3.885011509535932*^9, 3.8850115121509457`*^9}, {3.885012159730644*^9,
3.885012195799246*^9}},ExpressionUUID->"1b461964-7a3b-4114-9d14-\
095a04e3813f"],
Cell[TextData[StyleBox["We consider a transformation of coordinates \
x\[Rule]x+ \[Xi](x), where \[Xi] is a vector field. \nDefine a vector field \
\[Xi].",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.8850116852701*^9, 3.885011747288734*^9}, {
3.8850149284525337`*^9,
3.885014935042844*^9}},ExpressionUUID->"6b3af96d-2382-4fa6-8109-\
5bb8685c5f99"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Define", " ", "a", " ", "contravariant", " ", "vector", " ", "field", " ",
"\[Xi]", " ", "on", " ", "M", " ", "using", " ", "DefTensor"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885014916327965*^9, 3.885014917901677*^9},
3.885213775357636*^9},ExpressionUUID->"ad7b1eeb-6054-4859-91f4-\
dc541e5ee681"],
Cell[TextData[{
StyleBox[ButtonBox["Transformation rules",
BaseStyle->"Hyperlink",
ButtonData->{
URL["https://reference.wolfram.com/language/howto/WorkWithRules.html"],
None},
ButtonNote->
"https://reference.wolfram.com/language/howto/WorkWithRules.html"],
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[" in the Wolfram Language let you set local values for symbols, \
functions, and all other types of expressions. Using rules provides a \
powerful and extensible method to replace all or part of another expression \
with the value you specify.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{
3.885011201724017*^9, {3.8850112619601107`*^9, 3.8850112739640303`*^9}, {
3.8850113948334723`*^9,
3.8850113948376493`*^9}},ExpressionUUID->"d4466e28-67d7-4515-a8af-\
c4f333f68be2"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Define", " ", "function", " ", "to", " ", "apply", " ", "some", " ",
"rule"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ApplyRule", "[", "expr_", "]"}], ":=",
RowBox[{"MakeRule", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"List", "@@", "expr"}], "]"}], ",",
RowBox[{"MetricOn", "\[Rule]", "All"}], ",",
RowBox[{"ContractMetrics", "\[Rule]", "True"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.884991069236877*^9, 3.884991087637248*^9}, {
3.8850276501692266`*^9, 3.885027650514708*^9}, {3.885027696030609*^9,
3.885027696340473*^9}, 3.88508529483309*^9, {3.885085399601656*^9,
3.885085403135582*^9}},ExpressionUUID->"84c5c59c-eb0d-4ce1-a40c-\
34541043cac5"],
Cell[TextData[StyleBox["Define a rule for the Gauge Transformation of the \
first order perturbation metric. ",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.8850114451133823`*^9, 3.885011501771667*^9}, {
3.885011825357566*^9, 3.885011839131509*^9}, {3.8850124069555817`*^9,
3.885012407237261*^9},
3.8850149658924522`*^9},ExpressionUUID->"7b2ece81-5abc-486c-8515-\
c2670852168d"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Define", " ", "the", " ", "gauge", " ", "transformation"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8849910928510017`*^9, 3.884991103045985*^9}, {
3.885085405140929*^9, 3.885085406225404*^9},
3.8852137935482683`*^9},ExpressionUUID->"2322e0e2-232d-4860-a40c-\
75ba8617d301"],
Cell[TextData[{
StyleBox["Note that this rule has only been defined and not applied. We will \
apply this rule afterwards using ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ApplyRule. ",
FontFamily->"Courier"],
StyleBox["\nWe expect the Riemann tensor to remain invariant under Gauge \
transformation.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{
3.885011834483636*^9, {3.8850118701029673`*^9, 3.885011905542952*^9}, {
3.8850124036699963`*^9, 3.885012414146928*^9}, {3.885012514707672*^9,
3.8850125256235437`*^9},
3.8850853204431067`*^9},ExpressionUUID->"e129382b-f7f1-4504-8951-\
b7d149bd40e9"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Expansion", " ", "of", " ", "Riemann", " ", "tensor"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.412482735569118*^9, 3.4124827572186728`*^9}, {
3.732521225392912*^9, 3.7325212261848173`*^9}, {3.827918697066889*^9,
3.8279187193597116`*^9}, {3.833877098995467*^9, 3.833877129887135*^9},
3.884990850603977*^9, {3.884990895956211*^9, 3.884990943806507*^9}, {
3.884991156959298*^9, 3.884991165630138*^9}, {3.884991417184586*^9,
3.8849914296006947`*^9}, {3.8850119336397743`*^9, 3.885011935343802*^9}, {
3.885085408031725*^9, 3.88508540925289*^9},
3.8852137965405073`*^9},ExpressionUUID->"481238a1-0547-433c-8e9c-\
e1c263161e85"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Gauge", "-",
RowBox[{"Transformed", " ", "Riemann", " ", "tensor"}]}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.884990995610903*^9, 3.8849910606385927`*^9}, {
3.884991347384439*^9, 3.88499136570695*^9}, {3.8850122442542973`*^9,
3.885012245151721*^9}, 3.885012275951646*^9, 3.885085329076502*^9, {
3.885085410770282*^9, 3.88508541214296*^9},
3.8852138006485147`*^9},ExpressionUUID->"f0e85fd0-1584-4c20-8a4a-\
099bd397496c"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Take", " ", "the", " ", "difference", " ", "between", " ", "the", " ",
"Riemann", " ", "tensor", " ", "before", " ", "and", " ", "after", " ",
"Gauge", " ", "transformation"}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8850122509445763`*^9, 3.885012257391663*^9}, {
3.885085368306703*^9, 3.8850853960799837`*^9},
3.885213804141478*^9},ExpressionUUID->"8db5f754-d1fc-48b9-a7f9-\
f6cf561c2a40"]
}, Open ]],
Cell[CellGroupData[{
Cell["Trace-reversed Metric perturbations in the Lorentz gauge", "Section",
CellChangeTimes->{{3.885023032647265*^9, 3.88502303994722*^9}, {
3.885023070767106*^9, 3.885023076993011*^9}, {3.8855566949769917`*^9,
3.885556706079712*^9}},ExpressionUUID->"a9f1b406-b488-408a-9d6d-\
249626e5c400"],
Cell[TextData[StyleBox["Define a rule for the trace reversed perturbation \
metric. ",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.885533385828972*^9, 3.885533390712277*^9}, {
3.885533427249958*^9, 3.885533430186997*^9},
3.885556952516884*^9},ExpressionUUID->"99d8989b-5537-46c1-8b34-\
efb3b69cd883"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Define", " ", "the", " ", "Trace", " ", "reversed", " ", "metric"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885023062325989*^9, 3.885023101062244*^9}, {
3.885023864814004*^9, 3.885023949912217*^9}, {3.885023991430346*^9,
3.885024046511711*^9}, {3.885024362298811*^9, 3.885024363662979*^9}, {
3.8850250118733797`*^9, 3.885025014672441*^9}, 3.885026563285246*^9, {
3.8855334041848097`*^9, 3.885533412432755*^9}, {3.885558257579378*^9,
3.885558266381925*^9}, {3.885558524361246*^9, 3.8855585254379673`*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"d19a1a7a-e235-4aaf-ae47-cfef77a5f929"],
Cell[TextData[StyleBox["Define a rule for the Lorentz gauge.",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.885533418362974*^9, 3.8855334194706*^9}, {
3.8855334723642*^9, 3.8855335399217863`*^9}, {3.885533600477434*^9,
3.885533603872171*^9}, 3.8855337291927834`*^9,
3.885556948374671*^9},ExpressionUUID->"8880569f-7260-4ba1-83ac-\
f6c21e796d06"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Define", " ", "the", " ", "Lorentz", " ", "gauge", " ", "condition"}],
" ", "*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885024506103613*^9, 3.885024584460681*^9}, {
3.885024911429165*^9, 3.885024930577778*^9}, {3.885025111877721*^9,
3.885025112011738*^9}, {3.885025237033249*^9, 3.885025248547535*^9}, {
3.885026425657276*^9, 3.885026441629496*^9}, 3.885026558979225*^9, {
3.885026925195912*^9, 3.8850269752894793`*^9}, {3.885027953030526*^9,
3.885027953141371*^9}, {3.885028468091971*^9, 3.8850284764441767`*^9}, {
3.88553297042605*^9, 3.8855330341661797`*^9}, {3.8855337165403757`*^9,
3.885533744059297*^9},
3.8855582699609003`*^9},ExpressionUUID->"f527c72d-3a87-4893-9c21-\
7f5ce02806d9"],
Cell[TextData[StyleBox["Expand the Einstein tensor to the first order in \
perturbation",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.885533925712144*^9, 3.885533925717445*^9}, {
3.8855339783061943`*^9,
3.885534019535892*^9}},ExpressionUUID->"e419af7b-4043-40c8-9a7a-\
dc76f1fd26d7"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.88502480527136*^9, 3.8850248063749323`*^9}, {
3.885025127817752*^9, 3.885025169534375*^9}, {3.8850272985866137`*^9,
3.885027317356041*^9}, {3.885027958655862*^9, 3.885028002162801*^9}, {
3.885533232232437*^9, 3.885533233207605*^9}, 3.8855563668664703`*^9, {
3.885556823593342*^9, 3.885556857410631*^9}, {3.8855568930220633`*^9,
3.885556915433578*^9}, {3.885557534943879*^9, 3.885557539830474*^9},
3.8855582769679193`*^9},ExpressionUUID->"646625fb-c5ad-46b1-8442-\
ad0351ae1cdf"],
Cell[TextData[StyleBox["Write the perturbed Einstein tensor in terms of the \
trace reversed metric.",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.8855340412890987`*^9, 3.885534075804666*^9}, {
3.88555646193295*^9,
3.885556463765729*^9}},ExpressionUUID->"e6536c74-f5f7-4a94-a5f8-\
e271c90b6917"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Apply", " ", "the", " ", "rule", " ", "for", " ", "trace"}], "-",
RowBox[{"reversed", " ", "metric"}]}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885024345672886*^9, 3.885024353643368*^9}, {
3.8850247995027847`*^9, 3.885024834586129*^9}, {3.885024969047707*^9,
3.885024995719431*^9}, {3.8850251769519253`*^9, 3.885025195805573*^9}, {
3.885025282961417*^9, 3.885025285494382*^9}, {3.885026761080182*^9,
3.8850267689862432`*^9}, {3.885027093036652*^9, 3.885027104306294*^9},
3.885027365396867*^9, {3.8850277960598516`*^9, 3.8850278100623903`*^9}, {
3.885028057593144*^9, 3.8850280666548643`*^9}, {3.885028139422147*^9,
3.8850281758943*^9}, 3.885085346102648*^9, {3.8855327866511173`*^9,
3.8855327939605513`*^9}, {3.885534077600255*^9, 3.8855340897772703`*^9}, {
3.885557548269515*^9, 3.885557578158127*^9},
3.885558285066401*^9},ExpressionUUID->"0e857427-9d5f-443f-ae13-\
3f19bc6949cb"],
Cell[TextData[{
StyleBox["Use ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ContractMetric",
FontFamily->"Courier"],
StyleBox[" until all the terms are contracted.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.885534115162315*^9, 3.88553413598601*^9}, {
3.88555627028238*^9, 3.885556313495713*^9}, {3.885558302518173*^9,
3.885558336252973*^9}},ExpressionUUID->"74ba5450-94d1-49f2-b4a4-\
0346cb83e7fd"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.885028106108192*^9, 3.88502812577032*^9}, {
3.8850282200293093`*^9, 3.885028221705822*^9}, {3.8855570825150347`*^9,
3.885557097780971*^9}, {3.885557588802628*^9, 3.8855576049158792`*^9},
3.885558289245337*^9},ExpressionUUID->"53c60ebe-a906-4e68-8a1a-\
bdda437dc21a"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.885557146585355*^9, 3.8855571863689938`*^9}, {
3.8855576104408703`*^9, 3.885557623910165*^9},
3.885558357692596*^9},ExpressionUUID->"f1390d5c-fbec-4182-8255-\
7e6719460069"],
Cell[TextData[StyleBox["Apply the Lorentz gauge condition.",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.885558381581572*^9,
3.885558397382906*^9}},ExpressionUUID->"3a4b96b1-e91f-41aa-8312-\
a8e38926e11e"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.885024840506625*^9, 3.885024897822804*^9}, {
3.885024946727928*^9, 3.88502494897789*^9}, {3.8850252770384693`*^9,
3.885025279314282*^9}, {3.885026494571484*^9, 3.8850265125540867`*^9}, {
3.8850265781032257`*^9, 3.885026586854105*^9}, {3.885026770564714*^9,
3.88502677309173*^9}, {3.885027020789895*^9, 3.8850270808280687`*^9}, {
3.885027423478138*^9, 3.885027429508647*^9}, {3.885027768429039*^9,
3.885027787393751*^9}, 3.885028292590228*^9, 3.885085349494996*^9, {
3.885533082795862*^9, 3.885533088919396*^9}, 3.885557421028235*^9, {
3.885557650860832*^9, 3.885557690968754*^9}, {3.88555842380995*^9,
3.885558426369391*^9}},ExpressionUUID->"f656430c-b556-4d9d-8412-\
84d79890e205"],
Cell[TextData[StyleBox["As you can see that MATHEMATICA doesn\
\[CloseCurlyQuote]t know to apply Lorentz gauge condition under commutation \
of partial derivatives. So define a rule for the commuted Lorentz gauge.",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.885557323428302*^9,
3.8855573661180573`*^9}},ExpressionUUID->"de0ff958-5598-4e69-a6e7-\
f1c875c0060c"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Define", " ", "a", " ", "rule", " ", "for", " ", "the", " ", "commuted",
" ", "Lorentz", " ", "gauge"}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885557844581134*^9, 3.88555785013531*^9},
3.8855581642006807`*^9,
3.885558436758066*^9},ExpressionUUID->"c1545bf1-a77c-4623-a297-\
66932a675ced"],
Cell[TextData[StyleBox["Apply the commuted Lorentz gauge condition.",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.885558381581572*^9, 3.885558397382906*^9}, {
3.885558448357451*^9,
3.885558452257477*^9}},ExpressionUUID->"d5001955-a50c-464b-bf29-\
074024023944"],
Cell[BoxData[""], "Input",
CellChangeTimes->{
3.88555751657885*^9, {3.8855577004801188`*^9, 3.885557708749981*^9},
3.885558482126107*^9},ExpressionUUID->"1f5a0767-cac1-4051-9093-\
7b89172327a3"]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
(optional) : GR calculations in a coordinate basis without packages\
\>", "Section",
CellChangeTimes->{{3.884876372624441*^9, 3.884876375863749*^9}, {
3.884876440609164*^9, 3.8848764636076527`*^9}, {3.884910029153553*^9,
3.8849100396232777`*^9}, {3.884921677726839*^9, 3.884921679974163*^9}, {
3.884964570796677*^9, 3.884964599773075*^9}, {3.8849647189409733`*^9,
3.884964749965152*^9}, {3.8849919054177103`*^9, 3.884991911513878*^9}, {
3.885015076108*^9, 3.8850150967460423`*^9}, {3.885015152962513*^9,
3.8850151532431707`*^9}},ExpressionUUID->"ba8012bb-1c54-457e-95c4-\
48f82679c05e"],
Cell[TextData[{
StyleBox["Here we define the perturbation metric in the TT-gauge using \
matrix notation in MATHEMATICA. \nFirst we specify the coordinates and the \
explicit form of the perturbation metric in those coordinates. \nWe also \
define the background metric. \nOur convention here is that ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["d",
FontFamily->"TeX Gyre Bonum Math",
FontSlant->"Italic"],
StyleBox[" will denote a covariant index and ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["U",
FontFamily->"TeX Gyre Bonum Math",
FontSlant->"Italic"],
StyleBox[" will denote a contravariant index.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884877060952383*^9, 3.8848771406673307`*^9}, {
3.8850854262445383`*^9, 3.88508547607533*^9}, {3.8850855071531973`*^9,
3.885085584505064*^9}},ExpressionUUID->"fe309883-b466-4c68-9cc6-\
acb2232e630a"],
Cell[BoxData[{
RowBox[{
RowBox[{"coord", " ", "=", " ",
RowBox[{"{",
RowBox[{"t", ",", "x", ",", "y", ",", " ", "z"}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"hdd", "=",
RowBox[{"\[Epsilon]", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"hp", "[",
RowBox[{"t", ",", " ", "x", ",", " ", "y", ",", " ", "z"}], "]"}],
",",
RowBox[{"hc", "[",
RowBox[{"t", ",", "x", " ", ",", " ", "y", ",", " ", "z"}], "]"}],
",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"hc", "[",
RowBox[{"t", ",", " ", "x", ",", " ", "y", ",", " ", "z"}], "]"}],
",", " ",
RowBox[{"-",
RowBox[{"hp", "[",
RowBox[{"t", ",", " ", "x", ",", " ", "y", ",", " ", "z"}], "]"}]}],
",", " ", "0"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"bdd", " ", "=", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "1", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "1", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0", ",", "1"}], "}"}]}], "}"}]}],
";"}]}], "Input",
CellChangeTimes->{{3.884876578071289*^9, 3.884876590571506*^9}, {
3.884876635032894*^9, 3.8848766539158792`*^9}, {3.884876808157206*^9,
3.8848768216158648`*^9}, {3.884909054054788*^9, 3.884909057475285*^9}, {
3.884909473645875*^9, 3.884909502502667*^9}, {3.8849095360569277`*^9,
3.884909548164818*^9}, {3.885085489381544*^9, 3.885085501405695*^9}},
CellLabel->"In[62]:=",ExpressionUUID->"e4e995f1-074d-4896-b644-78b08d328af8"],
Cell[TextData[{
StyleBox["We can now get the perturbed metric using ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["Series",
FontFamily->"Courier"],
StyleBox[" function with parameter \[Epsilon] lying between 0 and 1.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.885085613366517*^9,
3.885085675551119*^9}},ExpressionUUID->"d8b25128-e1a5-405e-8462-\
92f83650a6e4"],
Cell[BoxData[{
RowBox[{
RowBox[{"gdd", "=",
RowBox[{"Series", "[",
RowBox[{
RowBox[{"bdd", "+", "hdd"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "0", ",", "1"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"gUU", "=",
RowBox[{"Inverse", "[", "gdd", "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"gdet", "=",
RowBox[{"FullSimplify", "[",
RowBox[{"Det", "[", "gdd", "]"}], "]"}]}], ";"}], " "}]}], "Input",
CellChangeTimes->{{3.8848766983514957`*^9, 3.884876712984598*^9}, {
3.8848768186667147`*^9, 3.884876837731639*^9}, {3.884877198772111*^9,
3.8848772262647963`*^9}, {3.884910827870572*^9, 3.884910828125744*^9}, {
3.885085591134918*^9, 3.885085591392536*^9}},
CellLabel->"In[65]:=",ExpressionUUID->"3637b842-4df9-4e40-9e33-0ad9d9887d59"],
Cell[TextData[StyleBox["Christoffel symbols",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.884877245221979*^9, 3.884877250663397*^9},
3.8849108329404783`*^9,
3.885015116916458*^9},ExpressionUUID->"4f56bc75-051b-41e1-80b7-\
0ebe7471ba32"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"GammaUdd", "[",
RowBox[{"i_", ",", "k_", ",", "l_"}], "]"}], ":=",
RowBox[{"Series", "[",
RowBox[{
RowBox[{
FractionBox["1", "2"],
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"gUU", "[",
RowBox[{"[",
RowBox[{"i", ",", "j"}], "]"}], "]"}],
RowBox[{"(",
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"gdd", "[",
RowBox[{"[",
RowBox[{"j", ",", "k"}], "]"}], "]"}], ",",
RowBox[{"coord", "[",
RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "+",
RowBox[{"D", "[",
RowBox[{
RowBox[{"gdd", "[",
RowBox[{"[",
RowBox[{"j", ",", "l"}], "]"}], "]"}], ",",
RowBox[{"coord", "[",
RowBox[{"[", "k", "]"}], "]"}]}], "]"}], "-",
RowBox[{"D", "[",
RowBox[{
RowBox[{"gdd", "[",
RowBox[{"[",
RowBox[{"l", ",", "k"}], "]"}], "]"}], ",",
RowBox[{"coord", "[",
RowBox[{"[", "j", "]"}], "]"}]}], "]"}]}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "dimension"}], "}"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "0", ",", "1"}], "}"}]}], "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.8848772698904667`*^9, 3.884877270570455*^9}},
CellLabel->"In[68]:=",ExpressionUUID->"7f4c4af9-3f0b-479d-bbb6-ee17f5fe7eff"],
Cell[TextData[StyleBox["Riemann tensor with only first index contravariant",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.8848773156334763`*^9,
3.884877327071561*^9}},ExpressionUUID->"453b3430-302b-43ba-ab9a-\
c63a0a7f8453"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"RUddd", "[",
RowBox[{"i_", ",", "j_", ",", "k_", ",", "l_"}], "]"}], ":=",
RowBox[{"Series", "[",
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"GammaUdd", "[",
RowBox[{"i", ",", "j", ",", "l"}], "]"}], ",",
RowBox[{"coord", "[",
RowBox[{"[", "k", "]"}], "]"}]}], "]"}], "-",
RowBox[{"D", "[",
RowBox[{
RowBox[{"GammaUdd", "[",
RowBox[{"i", ",", "k", ",", "j"}], "]"}], ",",
RowBox[{"coord", "[",
RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "+",
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"GammaUdd", "[",
RowBox[{"i", ",", "k", ",", "m"}], "]"}],
RowBox[{"GammaUdd", "[",
RowBox[{"m", ",", "l", ",", "j"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"m", ",", "1", ",", "dimension"}], "}"}]}], "]"}], "-",
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"GammaUdd", "[",
RowBox[{"i", ",", "l", ",", "m"}], "]"}],
RowBox[{"GammaUdd", "[",
RowBox[{"m", ",", "k", ",", "j"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"m", ",", "1", ",", "dimension"}], "}"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "0", ",", "1"}], "}"}]}], "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.884877333169804*^9, 3.884877338221264*^9}},
CellLabel->"In[69]:=",ExpressionUUID->"f1a91646-3253-4d6e-8c4a-6e4c8ca3aa57"],
Cell[TextData[StyleBox["Riemann tensor with two contravariant and two \
covariant indices",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.884909175254169*^9,
3.884909198312566*^9}},ExpressionUUID->"a8b7a800-3f00-4032-ad64-\
d81cce5d999d"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"RUdUd", "[",
RowBox[{"i_", ",", "j_", ",", "k_", ",", "l_"}], "]"}], ":=",
RowBox[{"Series", "[",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"gUU", "[",
RowBox[{"[",
RowBox[{"k", ",", "m"}], "]"}], "]"}],
RowBox[{"RUddd", "[",
RowBox[{"i", ",", "j", ",", "m", ",", "l"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"m", ",", "1", ",", "dimension"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "0", ",", "1"}], "}"}]}], "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.884909271977377*^9, 3.8849092725815887`*^9}},
CellLabel->"In[70]:=",ExpressionUUID->"b8aef04b-afea-4dd1-908b-b7355bed81be"],
Cell[TextData[StyleBox["Ricci tensor",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.884909085559965*^9,
3.884909088162718*^9}},ExpressionUUID->"91b90885-0cf6-433d-b9a0-\
d8203eabaa6c"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"Riccidd", "[",
RowBox[{"i_", ",", "j_"}], "]"}], ":=",
RowBox[{"Series", "[",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{"RUddd", "[",
RowBox[{"m", ",", "i", ",", "m", ",", "j"}], "]"}], ",",
RowBox[{"{",
RowBox[{"m", ",", "1", ",", "dimension"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "0", ",", "1"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"RicciUd", "[",
RowBox[{"i_", ",", "j_"}], "]"}], ":=",
RowBox[{"Series", "[",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"gUU", "[",
RowBox[{"[",
RowBox[{"i", ",", "m"}], "]"}], "]"}],
RowBox[{"Riccidd", "[",
RowBox[{"m", ",", "j"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"m", ",", "1", ",", "dimension"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "0", ",", "1"}], "}"}]}], "]"}]}],
";"}]}], "Input",
CellChangeTimes->{{3.884876470221298*^9, 3.884876497741456*^9}, {
3.88487653177859*^9, 3.884876568833219*^9}, {3.884876675374901*^9,
3.884876684390345*^9}, 3.884877238858942*^9, {3.884877303910681*^9,
3.884877309856915*^9}, 3.8848792121773787`*^9, 3.884908845137323*^9,
3.8849090814263887`*^9, 3.88490917195422*^9, {3.884909243182876*^9,
3.884909247046891*^9}, {3.8849092773204947`*^9, 3.884909282852882*^9}},
CellLabel->"In[71]:=",ExpressionUUID->"de77c234-5c73-44cf-bfa1-f91e017c843c"],
Cell[TextData[StyleBox["If we now want to display the components of any \
indexed object in matrix form, use Table.",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.885085705944091*^9,
3.885085768231636*^9}},ExpressionUUID->"9a9dea78-889b-427b-9102-\
a09134c2f5c3"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"GammaUdd", "[",
RowBox[{"i", ",", "j", ",", "3"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "4"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", " ", "4"}], "}"}]}], "]"}], "//",
"FullSimplify"}], "//", "MatrixForm"}]], "Input",
CellChangeTimes->{{3.843564740328498*^9, 3.843564764575562*^9}, {
3.843564829580987*^9, 3.843564829730996*^9}, {3.884909679560705*^9,
3.8849097771653633`*^9}, {3.884909814099069*^9, 3.884909835703127*^9}, {
3.884964658537986*^9, 3.884964660275353*^9}},
CellLabel->"In[73]:=",ExpressionUUID->"2fd7fe6a-70f5-4561-b741-02f642ca6908"],
Cell[TextData[StyleBox["Ricci scalar",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.884909249033296*^9,
3.884909251697793*^9}},ExpressionUUID->"9b6efd0b-88ed-4a50-ae27-\
6ea51a41d511"],
Cell[BoxData[
RowBox[{"R", "=",
RowBox[{
RowBox[{"Series", "[",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"gUU", "[",
RowBox[{"[",
RowBox[{"i", ",", "j"}], "]"}], "]"}],
RowBox[{"Riccidd", "[",
RowBox[{"i", ",", "j"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "dimension"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "dimension"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "0", ",", "1"}], "}"}]}], "]"}], "//",
"FullSimplify"}]}]], "Input",
CellChangeTimes->{{3.884909255082135*^9, 3.8849092566200647`*^9}, {
3.8849093118561087`*^9, 3.884909315458728*^9}, 3.8849094258105516`*^9,
3.885086470764143*^9},
CellLabel->"In[76]:=",ExpressionUUID->"741acee4-2b50-4020-953c-2cec586fe0fe"]
}, Open ]]
}, Open ]]
},
WindowSize->{1199.4146341463415`, 621.6585365853659},
WindowMargins->{{0, Automatic}, {0, Automatic}},
TaggingRules-><|
"TryRealOnly" -> False, "ShowSpecialCharactersDockedCell" -> False|>,
Magnification:>1.1 Inherited,
FrontEndVersion->"13.0 for Linux x86 (64-bit) (February 4, 2022)",
StyleDefinitions->Notebook[{
Cell[
StyleData[
StyleDefinitions ->
FrontEnd`FileName[{"Report"}, "StandardReport.nb", CharacterEncoding ->
"UTF-8"]]]}, Visible -> False, FrontEndVersion ->
"13.0 for Linux x86 (64-bit) (February 4, 2022)", StyleDefinitions ->
"PrivateStylesheetFormatting.nb"],
ExpressionUUID->"10fefb0a-18d5-4308-ac23-662f8744cfa3"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 273, 4, 107, "Title",ExpressionUUID->"16c4c7ad-fbf6-4e75-889b-8bf5b6aeee14"],
Cell[856, 28, 198, 3, 37, "Subtitle",ExpressionUUID->"2fb7fc3c-72ce-464e-9c08-42dc526b3706"],
Cell[CellGroupData[{
Cell[1079, 35, 180, 3, 76, "Section",ExpressionUUID->"ed49cd83-5b9d-4c09-abce-60958bffab12"],
Cell[1262, 40, 2490, 62, 134, "Text",ExpressionUUID->"b531869a-08f0-44d9-8ff9-944b8cdc8f7d"]
}, Open ]],
Cell[CellGroupData[{
Cell[3789, 107, 244, 4, 76, "Section",ExpressionUUID->"1011d24e-9699-483a-961c-a9c7d6aa03d0"],
Cell[4036, 113, 464, 7, 33, "Text",ExpressionUUID->"f88ced20-8697-43cc-82b1-11e9078f084b"],
Cell[4503, 122, 367, 5, 44, "Input",ExpressionUUID->"05a28a2e-f912-48f1-8b20-0dc3c55bdd92"]
}, Open ]],
Cell[CellGroupData[{
Cell[4907, 132, 309, 5, 76, "Section",ExpressionUUID->"93408548-a522-4a1e-86e0-389db23d514a"],
Cell[5219, 139, 1791, 40, 76, "Text",ExpressionUUID->"9c43b05f-f2ef-46c9-a670-c32f9f2b20c3"],
Cell[7013, 181, 505, 9, 68, "Input",ExpressionUUID->"d43d5aa6-5f38-41ee-8e55-88be6499823c"],
Cell[7521, 192, 570, 10, 68, "Input",ExpressionUUID->"71e84643-86b0-40a0-825c-4debdb4beda2"],
Cell[8094, 204, 1145, 28, 97, "Text",ExpressionUUID->"54e70b7b-90c2-46d0-aa24-59a5c80d79e1"],
Cell[9242, 234, 484, 11, 68, "Input",ExpressionUUID->"f241b01c-b979-466d-a813-c8fa341136c2"],
Cell[9729, 247, 347, 6, 54, "Text",ExpressionUUID->"de7c8004-7c68-4606-8666-ec06de8fd43f"]
}, Open ]],
Cell[CellGroupData[{
Cell[10113, 258, 363, 6, 76, "Section",ExpressionUUID->"6905e0ef-33cd-4337-ae11-1ea40d821b4b"],
Cell[10479, 266, 287, 5, 33, "Text",ExpressionUUID->"20791885-6c3f-41bb-8a6f-1f3e8efa6fcc"],
Cell[10769, 273, 582, 10, 68, "Input",ExpressionUUID->"1770d4b1-101d-404f-bfee-bb7986235bba"],
Cell[11354, 285, 1079, 22, 121, "Text",ExpressionUUID->"aa2b4a6f-eccb-4546-b87d-0f5252f783b5"],
Cell[12436, 309, 1045, 30, 161, "Input",ExpressionUUID->"e1005954-8073-4add-873f-8e6d0d0eeb00"],
Cell[13484, 341, 211, 4, 33, "Text",ExpressionUUID->"9e104bbf-f346-4634-a60e-82f0e4f32a02"],
Cell[13698, 347, 511, 10, 68, "Input",ExpressionUUID->"b521d2a1-9b4f-4c43-b0d6-38c60637931e"],
Cell[14212, 359, 491, 12, 36, "Text",ExpressionUUID->"158605d3-7d8f-4df7-afb5-a31198afc0b7"],
Cell[14706, 373, 643, 11, 68, "Input",ExpressionUUID->"81811a93-601f-4597-a378-d98b9b2c591e"],
Cell[15352, 386, 443, 10, 36, "Text",ExpressionUUID->"18c60c9e-4cf5-4fa7-80b9-b12a7a938c86"],
Cell[15798, 398, 440, 9, 68, "Input",ExpressionUUID->"71fcb797-01d5-476c-aec8-0b36101c2a16"],
Cell[16241, 409, 436, 11, 36, "Text",ExpressionUUID->"774d69ad-046d-463b-8a41-76e3e2dbd649"],
Cell[16680, 422, 474, 9, 68, "Input",ExpressionUUID->"7cf35e74-ea09-46a8-8660-dcb0a9152373"]
}, Open ]],
Cell[CellGroupData[{
Cell[17191, 436, 407, 6, 76, "Section",ExpressionUUID->"1bacba40-3c8e-4f10-a605-b63b0db06f04"],
Cell[17601, 444, 1350, 33, 85, "Text",ExpressionUUID->"899e4fd3-f001-4651-99c6-e1a5c2443d88"],
Cell[18954, 479, 194, 3, 44, "Input",ExpressionUUID->"9711995f-2d1d-41f0-bc0f-563b2272ae27"]
}, Open ]],
Cell[CellGroupData[{
Cell[19185, 487, 406, 6, 76, "Section",ExpressionUUID->"b9a82a02-c84f-4826-83cb-afc2fad30eb1"],
Cell[19594, 495, 399, 11, 37, "Text",ExpressionUUID->"221be80c-86b0-4863-b2ec-c2bc2259ec06"],
Cell[19996, 508, 675, 13, 68, "Input",ExpressionUUID->"6f5d6a95-6b13-46ca-98e8-bed77c72d4a3"],
Cell[20674, 523, 651, 16, 80, "Text",ExpressionUUID->"23a5b391-8df2-4523-be7d-ec64887611b2"],
Cell[21328, 541, 656, 12, 68, "Input",ExpressionUUID->"698815bd-601f-4fc6-9a40-66e70dcf0c6d"],
Cell[21987, 555, 612, 11, 68, "Input",ExpressionUUID->"ef70df9e-4230-4419-98e0-2f526ac6f5d2"],
Cell[22602, 568, 442, 12, 37, "Text",ExpressionUUID->"6618013a-13d6-43b5-8302-b3a5b81e5f78"],
Cell[23047, 582, 600, 11, 68, "Input",ExpressionUUID->"f722540b-c19e-4a31-8b3e-22ffcf1a1e2c"],
Cell[23650, 595, 778, 18, 103, "Text",ExpressionUUID->"8275f1dd-7831-4f20-b076-f1f782dfe5c1"],
Cell[24431, 615, 608, 12, 68, "Input",ExpressionUUID->"bb890f00-f503-42df-95db-a2469cfdb169"],
Cell[25042, 629, 889, 23, 79, "Text",ExpressionUUID->"467049de-db31-4d88-a9a4-b5019739a329"],
Cell[25934, 654, 610, 12, 68, "Input",ExpressionUUID->"3417821d-1b50-4dc5-8616-b8027817ded9"],
Cell[26547, 668, 964, 23, 57, "Text",ExpressionUUID->"ee14279e-1753-4237-95e5-cddc8d008b64"],
Cell[27514, 693, 582, 12, 68, "Input",ExpressionUUID->"22d930eb-7072-404f-a0df-c74bdd337287"],
Cell[28099, 707, 601, 12, 68, "Input",ExpressionUUID->"79441b12-b2df-4be1-b500-e4dabc82ab62"],
Cell[28703, 721, 688, 13, 68, "Input",ExpressionUUID->"124a6ad6-4c23-4639-b5a2-312239b733e3"]
}, Open ]],
Cell[CellGroupData[{
Cell[29428, 739, 438, 7, 76, "Section",ExpressionUUID->"ab2e9c18-f157-48b4-a139-df1e4cbea159"],
Cell[29869, 748, 1181, 28, 85, "Text",ExpressionUUID->"8677752d-624e-495f-81cf-2d47ee26556b"],
Cell[31053, 778, 460, 12, 44, "Input",ExpressionUUID->"654ff8ee-9b51-4dc1-9a67-126b661da5c6"],
Cell[31516, 792, 520, 11, 33, "Text",ExpressionUUID->"4b05e6d2-3344-4daf-89ac-02ec358b3a26"],
Cell[32039, 805, 683, 13, 68, "Input",ExpressionUUID->"22a2ede4-8513-4e1e-b6e0-4285eb26b51b"],
Cell[32725, 820, 812, 15, 68, "Input",ExpressionUUID->"69af80ac-03b1-411b-b99f-3bd5f17df8c5"],
Cell[33540, 837, 477, 11, 68, "Input",ExpressionUUID->"ca2abc19-8851-4eea-94a1-dd72355b97eb"],
Cell[34020, 850, 714, 14, 68, "Input",ExpressionUUID->"8293e21a-3036-45f6-8d36-21cd0017c68c"]
}, Open ]],
Cell[CellGroupData[{
Cell[34771, 869, 461, 8, 76, "Section",ExpressionUUID->"1b461964-7a3b-4114-9d14-095a04e3813f"],
Cell[35235, 879, 377, 7, 54, "Text",ExpressionUUID->"6b3af96d-2382-4fa6-8109-5bb8685c5f99"],
Cell[35615, 888, 406, 9, 68, "Input",ExpressionUUID->"ad7b1eeb-6054-4859-91f4-dc541e5ee681"],
Cell[36024, 899, 828, 19, 54, "Text",ExpressionUUID->"d4466e28-67d7-4515-a8af-c4f333f68be2"],
Cell[36855, 920, 792, 18, 68, "Input",ExpressionUUID->"84c5c59c-eb0d-4ce1-a40c-34541043cac5"],
Cell[37650, 940, 412, 7, 33, "Text",ExpressionUUID->"7b2ece81-5abc-486c-8515-c2670852168d"],
Cell[38065, 949, 372, 8, 68, "Input",ExpressionUUID->"2322e0e2-232d-4860-a40c-75ba8617d301"],
Cell[38440, 959, 645, 15, 57, "Text",ExpressionUUID->"e129382b-f7f1-4504-8951-b7d149bd40e9"],
Cell[39088, 976, 739, 13, 68, "Input",ExpressionUUID->"481238a1-0547-433c-8e9c-e1c263161e85"],
Cell[39830, 991, 531, 11, 68, "Input",ExpressionUUID->"f0e85fd0-1584-4c20-8a4a-099bd397496c"],
Cell[40364, 1004, 502, 11, 68, "Input",ExpressionUUID->"8db5f754-d1fc-48b9-a7f9-f6cf561c2a40"]
}, Open ]],
Cell[CellGroupData[{
Cell[40903, 1020, 297, 4, 76, "Section",ExpressionUUID->"a9f1b406-b488-408a-9d6d-249626e5c400"],
Cell[41203, 1026, 331, 6, 33, "Text",ExpressionUUID->"99d8989b-5537-46c1-8b34-efb3b69cd883"],
Cell[41537, 1034, 696, 12, 68, "Input",ExpressionUUID->"d19a1a7a-e235-4aaf-ae47-cfef77a5f929"],
Cell[42236, 1048, 379, 6, 33, "Text",ExpressionUUID->"8880569f-7260-4ba1-83ac-f6c21e796d06"],
Cell[42618, 1056, 806, 15, 68, "Input",ExpressionUUID->"f527c72d-3a87-4893-9c21-7f5ce02806d9"],
Cell[43427, 1073, 312, 6, 33, "Text",ExpressionUUID->"e419af7b-4043-40c8-9a7a-dc76f1fd26d7"],
Cell[43742, 1081, 548, 8, 44, "Input",ExpressionUUID->"646625fb-c5ad-46b1-8442-ad0351ae1cdf"],
Cell[44293, 1091, 324, 6, 33, "Text",ExpressionUUID->"e6536c74-f5f7-4a94-a5f8-e271c90b6917"],
Cell[44620, 1099, 1028, 18, 68, "Input",ExpressionUUID->"0e857427-9d5f-443f-ae13-3f19bc6949cb"],
Cell[45651, 1119, 444, 11, 36, "Text",ExpressionUUID->"74ba5450-94d1-49f2-b4a4-0346cb83e7fd"],
Cell[46098, 1132, 326, 5, 44, "Input",ExpressionUUID->"53c60ebe-a906-4e68-8a1a-bdda437dc21a"],
Cell[46427, 1139, 229, 4, 44, "Input",ExpressionUUID->"f1390d5c-fbec-4182-8255-7e6719460069"],
Cell[46659, 1145, 232, 4, 33, "Text",ExpressionUUID->"3a4b96b1-e91f-41aa-8312-a8e38926e11e"],
Cell[46894, 1151, 762, 11, 44, "Input",ExpressionUUID->"f656430c-b556-4d9d-8412-84d79890e205"],
Cell[47659, 1164, 389, 6, 54, "Text",ExpressionUUID->"de0ff958-5598-4e69-a6e7-f1c875c0060c"],
Cell[48051, 1172, 398, 10, 68, "Input",ExpressionUUID->"c1545bf1-a77c-4623-a297-66932a675ced"],
Cell[48452, 1184, 290, 5, 33, "Text",ExpressionUUID->"d5001955-a50c-464b-bf29-074024023944"],
Cell[48745, 1191, 201, 4, 44, "Input",ExpressionUUID->"1f5a0767-cac1-4051-9093-7b89172327a3"]
}, Open ]],
Cell[CellGroupData[{
Cell[48983, 1200, 612, 10, 76, "Section",ExpressionUUID->"ba8012bb-1c54-457e-95c4-48f82679c05e"],
Cell[49598, 1212, 905, 20, 97, "Text",ExpressionUUID->"fe309883-b466-4c68-9cc6-acb2232e630a"],
Cell[50506, 1234, 2020, 52, 91, "Input",ExpressionUUID->"e4e995f1-074d-4896-b644-78b08d328af8"],
Cell[52529, 1288, 402, 10, 36, "Text",ExpressionUUID->"d8b25128-e1a5-405e-8462-92f83650a6e4"],
Cell[52934, 1300, 852, 21, 91, "Input",ExpressionUUID->"3637b842-4df9-4e40-9e33-0ad9d9887d59"],
Cell[53789, 1323, 268, 5, 33, "Text",ExpressionUUID->"4f56bc75-051b-41e1-80b7-0ebe7471ba32"],
Cell[54060, 1330, 1583, 44, 84, "Input",ExpressionUUID->"7f4c4af9-3f0b-479d-bbb6-ee17f5fe7eff"],
Cell[55646, 1376, 250, 4, 33, "Text",ExpressionUUID->"453b3430-302b-43ba-ab9a-c63a0a7f8453"],
Cell[55899, 1382, 1551, 42, 114, "Input",ExpressionUUID->"f1a91646-3253-4d6e-8c4a-6e4c8ca3aa57"],
Cell[57453, 1426, 263, 5, 33, "Text",ExpressionUUID->"a8b7a800-3f00-4032-ad64-d81cce5d999d"],
Cell[57719, 1433, 774, 21, 44, "Input",ExpressionUUID->"b8aef04b-afea-4dd1-908b-b7355bed81be"],
Cell[58496, 1456, 210, 4, 33, "Text",ExpressionUUID->"91b90885-0cf6-433d-b9a0-d8203eabaa6c"],
Cell[58709, 1462, 1586, 41, 68, "Input",ExpressionUUID->"de77c234-5c73-44cf-bfa1-f91e017c843c"],
Cell[60298, 1505, 289, 5, 33, "Text",ExpressionUUID->"9a9dea78-889b-427b-9102-a09134c2f5c3"],
Cell[60590, 1512, 717, 16, 44, "Input",ExpressionUUID->"2fd7fe6a-70f5-4561-b741-02f642ca6908"],
Cell[61310, 1530, 210, 4, 33, "Text",ExpressionUUID->"9b6efd0b-88ed-4a50-ae27-6ea51a41d511"],
Cell[61523, 1536, 878, 23, 44, "Input",ExpressionUUID->"741acee4-2b50-4020-953c-2cec586fe0fe"]
}, Open ]]
}, Open ]]
}
]
*)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or sign in to comment