Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
Parameswaran Ajith
/
gwcourse2023
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Members
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit
f35fca01
authored
Feb 16, 2023
by
Souvik Jana
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
mathematica notebook added
parent
016ea2ac
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
1716 additions
and
0 deletions
tuturials/GW_tutorial_xAct_exercise.nb
tuturials/GW_tutorial_xAct_exercise.nb
0 → 100644
View file @
f35fca01
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 13.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 72958, 1708]
NotebookOptionsPosition[ 62429, 1563]
NotebookOutlinePosition[ 63260, 1589]
CellTagsIndexPosition[ 63217, 1586]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["PERTURBATIVE GRAVITY CALCULATIONS", "Title",
CellChangeTimes->{{3.884835110820406*^9, 3.884835130988607*^9}, {
3.884835216415772*^9, 3.884835224404133*^9}, {3.8848403851082067`*^9,
3.884840412877943*^9}},ExpressionUUID->"16c4c7ad-fbf6-4e75-889b-\
8bf5b6aeee14"],
Cell["Tutorial 4: Gravitational Wave Astrophysics course", "Subtitle",
CellChangeTimes->{{3.8849570126067953`*^9,
3.884957024035838*^9}},ExpressionUUID->"2fb7fc3c-72ce-464e-9c08-\
42dc526b3706"],
Cell[CellGroupData[{
Cell["Introduction", "Section",
CellChangeTimes->{{3.884866286242704*^9, 3.884866295264806*^9},
3.884946287410289*^9},ExpressionUUID->"ed49cd83-5b9d-4c09-abce-\
60958bffab12"],
Cell[TextData[{
StyleBox[ButtonBox["xAct`",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://www.xact.es/"], None},
ButtonNote->"http://www.xact.es/"],
FontFamily->"Courier"],
StyleBox["is a collection of packages, organized hierarchically.",
FontFamily->"TeX Gyre Pagella"],
StyleBox["\n",
FontFamily->"Courier"],
StyleBox[ButtonBox["xPert`",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://www.xact.es/xPert/"], None},
ButtonNote->"http://www.xact.es/xPert/"],
FontFamily->"Courier"],
StyleBox[" is a package for efficient construction and manipulation of \
high-order perturbations of the curvature tensors of a Riemannian manifold. \
Its main application is Perturbation Theory in General Relativity.",
FontFamily->"TeX Gyre Bonum Math"],
"\n",
StyleBox["xPert` ",
FontFamily->"Courier"],
StyleBox["needs the underlying package",
FontFamily->"TeX Gyre DejaVu Math"],
StyleBox[" ",
FontFamily->"Shadows Into Light Two"],
StyleBox[ButtonBox["xTensor`",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://xact.es/xTensor/"], None},
ButtonNote->"http://xact.es/xTensor/"],
FontFamily->"Courier"],
StyleBox[" ",
FontFamily->"Courier"],
StyleBox["for abstract tensor manipulations.\n",
FontFamily->"TeX Gyre DejaVu Math"],
StyleBox[ButtonBox["xTras`",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://www.xact.es/xtras/"], None},
ButtonNote->"http://www.xact.es/xtras/"],
FontFamily->"Courier"],
StyleBox[" ",
FontFamily->"Courier"],
StyleBox["is required t",
FontFamily->"TeX Gyre DejaVu Math"],
StyleBox["o fix the background metric as Minkowski. ",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.8848661517835217`*^9, 3.8848661604757433`*^9}, {
3.884866257332738*^9, 3.884866269384557*^9}, {3.884877757777568*^9,
3.8848779252293367`*^9}, {3.8848779655381193`*^9,
3.8848779665814962`*^9}, {3.8848780511593018`*^9, 3.88487806591621*^9}, {
3.884878103317875*^9, 3.884878109640395*^9}, {3.884878267708603*^9,
3.884878267880322*^9}, 3.884878483788472*^9, {3.8849126271852407`*^9,
3.884912643950151*^9}, {3.8850006396438723`*^9, 3.8850006554864187`*^9}, {
3.8850006975021267`*^9, 3.885000746173485*^9}, {3.885000959324028*^9,
3.88500097606672*^9}, {3.885010171769676*^9, 3.885010171773984*^9}, {
3.8850102532777777`*^9, 3.8850102989519377`*^9}, {3.885012615084203*^9,
3.885012615448307*^9}},ExpressionUUID->"b531869a-08f0-44d9-8ff9-\
944b8cdc8f7d"]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[StyleBox["Loading the packages", "Section"]], "Section",
CellChangeTimes->{{3.884835312233243*^9, 3.884835318059031*^9},
3.884946288660326*^9,
3.88495705965132*^9},ExpressionUUID->"1011d24e-9699-483a-961c-\
a9c7d6aa03d0"],
Cell[TextData[StyleBox["Load the packages from the default directory, for \
example $HOME/.Mathematica/Application/xAct",
FontFamily->"TeX Gyre DejaVu Math"]], "Text",
CellChangeTimes->{{3.8848353391131363`*^9, 3.884835366984775*^9}, {
3.884861032532948*^9, 3.884861035411989*^9}, {3.884957053473324*^9,
3.884957074929068*^9}, 3.88500105139493*^9, {3.885010350885908*^9,
3.885010363610298*^9}},ExpressionUUID->"f88ced20-8697-43cc-82b1-\
11e9078f084b"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.88483538101033*^9, 3.8848353875163307`*^9}, {
3.8848354337297583`*^9, 3.884835467118732*^9}, 3.884839797135007*^9, {
3.884860344217823*^9, 3.884860355936778*^9}, {3.885001032858625*^9,
3.885001039122848*^9}, 3.885213606317752*^9},
CellLabel->"In[1]:=",ExpressionUUID->"05a28a2e-f912-48f1-8b20-0dc3c55bdd92"]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[StyleBox["Defining a manifold and a metric ", "Section"]], \
"Section",
CellChangeTimes->{{3.88483886566749*^9, 3.884838873240838*^9},
3.884839007129225*^9, 3.884946289980142*^9, {3.8850012151991653`*^9,
3.8850012247359753`*^9}},ExpressionUUID->"93408548-a522-4a1e-86e0-\
389db23d514a"],
Cell[TextData[{
StyleBox["For the purpose of this tutorial, we shall think of a \
(differentiable) ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[ButtonBox["manifold",
BaseStyle->"Hyperlink",
ButtonData->{
URL["https://en.wikipedia.org/wiki/Differentiable_manifold"], None},
ButtonNote->"https://en.wikipedia.org/wiki/Differentiable_manifold"],
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[", ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["M",
FontFamily->"TeX Gyre Bonum Math",
FontWeight->"Bold"],
StyleBox[", as a topological space in which ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[ButtonBox["Principle of Equivalence",
BaseStyle->"Hyperlink",
ButtonData->{
URL["https://en.wikipedia.org/wiki/Equivalence_principle"], None},
ButtonNote->"https://en.wikipedia.org/wiki/Equivalence_principle"],
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[" is valid, i.e., locally Minkowski. Many local regions of ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["M",
FontFamily->"TeX Gyre Bonum Math",
FontWeight->"Bold"],
StyleBox[" are patched up by piecing together locally-Minkowski regions \
using differentiable functions. ",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884839142384515*^9, 3.884839209015052*^9}, {
3.884839240585724*^9, 3.884839474112876*^9}, {3.88486105132859*^9,
3.8848610871143436`*^9}, {3.88498787119937*^9, 3.8849878814344473`*^9}, {
3.8850104277141*^9, 3.8850104277168694`*^9}, {3.885010588535905*^9,
3.88501058853968*^9}, {3.88501289190832*^9, 3.8850129033233423`*^9}, {
3.8850129468983717`*^9, 3.8850129503902483`*^9}, {3.885084726570259*^9,
3.8850847275722923`*^9}, {3.885084759700984*^9,
3.885084760151636*^9}},ExpressionUUID->"9c43b05f-f2ef-46c9-a670-\
c32f9f2b20c3"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Dimension", " ", "of", " ", "the", " ", "spacetime"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8848395225312567`*^9, 3.884839530465794*^9}, {
3.8849457267470512`*^9, 3.884945729525358*^9}, {3.884987813879525*^9,
3.884987823407178*^9}, {3.885013530555646*^9, 3.885013531602565*^9}, {
3.885213621431356*^9, 3.885213634436346*^9}},
CellLabel->"In[2]:=",ExpressionUUID->"d43d5aa6-5f38-41ee-8e55-88be6499823c"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Use", " ", "DefManifold", " ", "to", " ", "define", " ", "the", " ",
"manifold"}], " ", "*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8848395065398273`*^9, 3.884839557073833*^9}, {
3.884922656977125*^9, 3.8849226677827473`*^9}, {3.8849570823266087`*^9,
3.8849570838498507`*^9}, {3.884987826555395*^9, 3.8849878442277527`*^9}, {
3.88501353358365*^9, 3.8850135350497828`*^9}, 3.885213631066698*^9},
CellLabel->"In[3]:=",ExpressionUUID->"71e84643-86b0-40a0-825c-4debdb4beda2"],
Cell[TextData[{
StyleBox["Note that, defining a manifold automatically defines a tangent \
vector space.\n\nDefine a metric field ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["g ",
FontFamily->"TeX Gyre Bonum Math",
FontWeight->"Bold"],
StyleBox["on this manifold, with negative determinant and associated \
covariant derivative CD. \nWe shall use the convention :",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[" ", "NaturalLanguageInput",
FontFamily->"TeX Gyre Bonum Math",
FontSize->15],
StyleBox["[-\[Alpha]]", "CodeText",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[" for a covariant index and ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["[\[Alpha]]", "CodeText",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[" for a contravariant index.", "NaturalLanguageInput",
FontFamily->"TeX Gyre Bonum Math",
FontSize->15]
}], "Text",
CellChangeTimes->{
3.8850012412739363`*^9, {3.885012694806768*^9, 3.885012698308625*^9}, {
3.885012992578274*^9, 3.885013065308855*^9}, {3.885013209553254*^9,
3.885013212013472*^9},
3.8850847653359528`*^9},ExpressionUUID->"54e70b7b-90c2-46d0-aa24-\
59a5c80d79e1"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
RowBox[{
"Define", " ", "a", " ", "metric", " ", "with", " ", "signature"}], " ",
"-",
RowBox[{"1", " ", "using", " ", "DefMetric"}]}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8850132718440866`*^9, 3.885013274974597*^9}, {
3.8850135403273687`*^9, 3.8850135411478148`*^9}, 3.885213649345028*^9},
CellLabel->"In[4]:=",ExpressionUUID->"f241b01c-b979-466d-a813-c8fa341136c2"],
Cell[TextData[StyleBox["As can be seen, a bunch of quantities including the \
Riemann tensor, Ricci tensor, etc. are automatically defined as soon as we \
define the metric.",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.885013108087818*^9,
3.885013198751267*^9}},ExpressionUUID->"de7c8004-7c68-4606-8666-\
ec06de8fd43f"]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[StyleBox["Curvature tensors and Christoffel symbol", \
"Section"]], "Section",
CellChangeTimes->{{3.884839976568688*^9, 3.884840003765033*^9}, {
3.8848401397681513`*^9, 3.884840148209196*^9}, {3.8848404312347*^9,
3.884840448845828*^9}, 3.884946293146699*^9,
3.885002176808303*^9},ExpressionUUID->"6905e0ef-33cd-4337-ae11-\
1ea40d821b4b"],
Cell[TextData[StyleBox["By default, curvature tensors show the name of the \
derivative they are associated to:",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.884840177913658*^9,
3.8848401980366497`*^9}},ExpressionUUID->"20791885-6c3f-41bb-8a6f-\
1f3e8efa6fcc"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Display", " ", "the", " ", "Riemann", " ", "tensor"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8848402052461576`*^9, 3.884840245100526*^9}, {
3.884840280195359*^9, 3.884840294574544*^9}, {3.884840626723077*^9,
3.884840628451305*^9}, {3.884958997552298*^9, 3.8849589984527617`*^9}, {
3.884987939411264*^9, 3.884987948392783*^9}, {3.885013544235227*^9,
3.885013546116289*^9}, 3.8852136647070827`*^9},
CellLabel->"In[5]:=",ExpressionUUID->"1770d4b1-101d-404f-bfee-bb7986235bba"],
Cell[TextData[{
StyleBox["Because we shall work with a single covariant derivative operator, \
we can choose a simpler output for the geometric tensors. ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["xTensor`",
FontFamily->"Courier"],
StyleBox[" has its own type system and registration mechanism, that keeps \
track of all that has been declared during a session, and the mutual \
relations. The same symbol cannot be used to define two different objects. \
However two different symbols can be typeset in the same way (say both the \
Riemann and Ricci tensors can be typeset as ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["R",
FontFamily->"TeX Gyre Bonum Math",
FontSlant->"Italic"],
StyleBox["). \nThe ^= notation denotes an \[OpenCurlyDoubleQuote]upvalue\
\[CloseCurlyDoubleQuote]. ",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884840326492112*^9, 3.884840363013981*^9}, {
3.884912206239367*^9, 3.884912210257708*^9}, {3.884914811148776*^9,
3.884914856647202*^9}},ExpressionUUID->"aa2b4a6f-eccb-4546-b87d-\
0f5252f783b5"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Typeset", " ", "the", " ", "Curvature", " ", "tensors", " ", "using", " ",
"PrintAs"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"PrintAs", "[", "RiemannCD", "]"}], "^=", "\"\<R\>\""}], ";"}],
"\n",
RowBox[{
RowBox[{
RowBox[{"PrintAs", "[", "RicciCD", "]"}], "^=", "\"\<R\>\""}], ";"}],
"\n",
RowBox[{
RowBox[{
RowBox[{"PrintAs", "[", "RicciScalarCD", "]"}], "^=", "\"\<R\>\""}],
";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"PrintAs", "[", "ChristoffelCD", "]"}], "^=",
"\"\<\[CapitalGamma]\>\""}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"PrintAs", "[", "EinsteinCD", "]"}], "^=", "\"\<G\>\""}],
";"}]}]}]], "Input",
CellChangeTimes->{{3.884987960607943*^9, 3.8849879741492233`*^9}, {
3.884988075177381*^9, 3.884988077930792*^9}, {3.885013549268167*^9,
3.8850135507393503`*^9}},
CellLabel->"In[6]:=",ExpressionUUID->"e1005954-8073-4add-873f-8e6d0d0eeb00"],
Cell[TextData[StyleBox["So that now",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.884840467757595*^9,
3.8848404698284616`*^9}},ExpressionUUID->"9e104bbf-f346-4634-a60e-\
82f0e4f32a02"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "Riemann", " ", "tensor", " ", "after", " ",
"typesetting"}], " ", "*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.884840473031266*^9, 3.8848404827344627`*^9}, {
3.884840621728561*^9, 3.884840624054222*^9}, {3.884987982440153*^9,
3.884988000068379*^9}, {3.885013552824644*^9, 3.8850135539062157`*^9},
3.88521367068288*^9},
CellLabel->"In[11]:=",ExpressionUUID->"b521d2a1-9b4f-4c43-b0d6-38c60637931e"],
Cell[TextData[{
StyleBox["Check how the Riemann tensor is defined from the Christoffel \
symbols using ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["RiemannToChristoffel",
FontFamily->"Courier"],
StyleBox[".",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884840562107671*^9, 3.884840592859359*^9}, {
3.885013398481429*^9, 3.885013430718487*^9}, {3.885014027089479*^9,
3.8850140274850597`*^9}},ExpressionUUID->"158605d3-7d8f-4df7-afb5-\
a31198afc0b7"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Make", " ", "use", " ", "of", " ", "%", " ", "sign"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.884840602316243*^9, 3.8848406087777977`*^9}, {
3.884840644258705*^9, 3.8848406516904087`*^9}, {3.8848407036710176`*^9,
3.8848407332679157`*^9}, {3.884914391193907*^9, 3.884914441544153*^9}, {
3.8849880102026167`*^9, 3.8849880531969976`*^9}, {3.8850134619249687`*^9,
3.885013464146249*^9}, {3.8850135563243923`*^9, 3.885013558178993*^9},
3.885213677678883*^9},
CellLabel->"In[12]:=",ExpressionUUID->"81811a93-601f-4597-a378-d98b9b2c591e"],
Cell[TextData[{
StyleBox["Similarly, check how the Christoffel symbols are defined from the \
metric and its derivatives using ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ChristoffelToMetric",
FontFamily->"Courier"]
}], "Text",
CellChangeTimes->{{3.8848407498493433`*^9, 3.884840773776738*^9}, {
3.8850134755302677`*^9, 3.885013504271399*^9},
3.8850140299172897`*^9},ExpressionUUID->"18c60c9e-4cf5-4fa7-80b9-\
b12a7a938c86"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Make", " ", "use", " ", "of"}], " ", "//"}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8848408356923428`*^9, 3.884840871756229*^9}, {
3.8849881076431303`*^9, 3.8849881132436457`*^9}, {3.88501355958599*^9,
3.8850135605748587`*^9}, 3.885213684025405*^9},
CellLabel->"In[13]:=",ExpressionUUID->"71fcb797-01d5-476c-aec8-0b36101c2a16"],
Cell[TextData[{
StyleBox["Using ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["EinsteinToRicci ",
FontFamily->"Courier"],
StyleBox["check the definition of the Einstein tensor",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884840973801306*^9, 3.884840991612666*^9}, {
3.885013645563705*^9, 3.8850137435994253`*^9},
3.885014023084791*^9},ExpressionUUID->"774d69ad-046d-463b-8a41-\
76e3e2dbd649"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "the", " ", "Einstein", " ", "tensor", " ", "in", " ",
"terms", " ", "of", " ", "the", " ", "Ricci", " ", "tensors"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.88498814240982*^9, 3.884988156533515*^9}, {
3.8850136371648207`*^9, 3.8850136393523827`*^9}, 3.8852136893299007`*^9},
CellLabel->"In[14]:=",ExpressionUUID->"7cf35e74-ea09-46a8-8660-dcb0a9152373"]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[StyleBox["Defining metric perturbation", "Section"]], "Section",
CellChangeTimes->{{3.884841049739797*^9, 3.8848410524542027`*^9}, {
3.8848410939058733`*^9, 3.8848411023779182`*^9}, 3.884858508331636*^9, {
3.884916202747191*^9, 3.8849162037448053`*^9}, 3.884946295116935*^9, {
3.885001493925358*^9,
3.885001501250948*^9}},ExpressionUUID->"1bacba40-3c8e-4f10-a605-\
b63b0db06f04"],
Cell[TextData[{
StyleBox["After defining the background metric using ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["xTensor`",
FontFamily->"Courier"],
StyleBox[", we now define the perturbative structure with the command ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["DefMetricPerturbation",
FontFamily->"Courier"],
StyleBox[" of ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["xPert`",
FontFamily->"Courier"],
StyleBox[".\n",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["Define the metric perturbation as ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["h ",
FontFamily->"Courier"],
StyleBox["and the perturbation order parameter as",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[" ",
FontFamily->"Courier"],
StyleBox["\[Epsilon]. ",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884841115476968*^9, 3.8848411245036993`*^9}, {
3.884841850615172*^9, 3.8848418850843678`*^9}, {3.884858314404689*^9,
3.88485832685861*^9}, 3.884878503839304*^9, {3.8848785369770947`*^9,
3.884878538301622*^9}, {3.884878693046835*^9, 3.8848787466716843`*^9}, {
3.8850016035986233`*^9, 3.8850016508387547`*^9}, 3.885001699319092*^9, {
3.885013812207836*^9, 3.885013914416473*^9}, {3.8850140183115396`*^9,
3.885014019018818*^9}},ExpressionUUID->"899e4fd3-f001-4651-99c6-\
e1a5c2443d88"],
Cell[BoxData[""], "Input",
CellChangeTimes->{3.884841826738628*^9, 3.884866736649538*^9,
3.885213694927868*^9},
CellLabel->"In[15]:=",ExpressionUUID->"9711995f-2d1d-41f0-bc0f-563b2272ae27"]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[StyleBox["Curvature tensors in linearized theory about flat \
metric", "Section"]], "Section",
CellChangeTimes->{{3.8848584939190063`*^9, 3.884858511247962*^9},
3.8849462973849583`*^9, {3.88500245106557*^9, 3.885002472139699*^9}, {
3.885002530115419*^9, 3.885002534616315*^9}, {3.885008032733675*^9,
3.885008035609095*^9}},ExpressionUUID->"b9a82a02-c84f-4826-83cb-\
afc2fad30eb1"],
Cell[TextData[{
StyleBox["Perturbed",
FontFamily->"Courier"],
" ",
StyleBox["command can be used to view the perturbation of an object up to \
nth order in \[Epsilon].",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.885014129880333*^9, 3.88501416985466*^9}, {
3.885014243166313*^9,
3.8850142530093613`*^9}},ExpressionUUID->"221be80c-86b0-4863-b2ec-\
c2bc2259ec06"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Display", " ", "the", " ", "linear"}], "-",
RowBox[{
"order", " ", "perturbation", " ", "of", " ", "the", " ", "metric"}]}],
" ", "*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8848585865982227`*^9, 3.884858608759074*^9}, {
3.8848587224147243`*^9, 3.884858722656098*^9}, {3.88485938235491*^9,
3.8848593881721973`*^9}, {3.8849890266297483`*^9, 3.884989048594523*^9}, {
3.88500845112707*^9, 3.885008469294985*^9}, {3.885014200781261*^9,
3.885014218196656*^9}, 3.885213699931499*^9},
CellLabel->"In[16]:=",ExpressionUUID->"6f5d6a95-6b13-46ca-98e8-bed77c72d4a3"],
Cell[TextData[{
StyleBox["The perturbation above has been defined only for the metric with \
covariant indices. The perturbations of the inverse metric (and all other \
contravariant quantities) are handled by",
FontFamily->"TeX Gyre Bonum Math"],
" ",
StyleBox["ExpandPerturbation",
FontFamily->"Courier"],
", ",
StyleBox["which makes use of exact formulae to expand the perturbations of \
any geometric object.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884858779681438*^9, 3.8848587877575407`*^9}, {
3.884858819967702*^9,
3.8848589218966827`*^9}},ExpressionUUID->"23a5b391-8df2-4523-be7d-\
ec64887611b2"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "the", " ", "linearized", " ", "perturbation", " ", "of",
" ", "the", " ", "inverse", " ", "metric"}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.884858660451878*^9, 3.8848586682695417`*^9}, {
3.884858726821618*^9, 3.884858727035568*^9}, {3.8849622032044992`*^9,
3.88496221423201*^9}, {3.884989060234014*^9, 3.88498907908239*^9}, {
3.8850084752292843`*^9, 3.8850084799492903`*^9}, {3.885014336268314*^9,
3.885014345324685*^9}, 3.8852137038480673`*^9},
CellLabel->"In[17]:=",ExpressionUUID->"698815bd-601f-4fc6-9a40-66e70dcf0c6d"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Use", " ", "ExpandPerturbation", " ", "to", " ", "display", " ", "in",
" ", "terms", " ", "of", " ", "the", " ", "perturbation", " ",
"parameter"}], " ", "*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8848586744613113`*^9, 3.884858678286227*^9}, {
3.884962216952814*^9, 3.884962232565105*^9}, 3.8849622627024097`*^9, {
3.884989095196541*^9, 3.884989122997696*^9}, {3.8850143500565863`*^9,
3.88501435169699*^9}, 3.885213707159116*^9},
CellLabel->"In[18]:=",ExpressionUUID->"ef70df9e-4230-4419-98e0-2f526ac6f5d2"],
Cell[TextData[{
StyleBox["To display the nth order perturbation term, we use",
FontFamily->"TeX Gyre Bonum Math"],
" ",
StyleBox["Perturbation",
FontFamily->"Courier"],
StyleBox[".",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884858945468566*^9, 3.884859027619825*^9},
3.8850027046536703`*^9, {3.885014315735259*^9,
3.8850143233441257`*^9}},ExpressionUUID->"6618013a-13d6-43b5-8302-\
b3a5b81e5f78"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "only", " ", "the", " ", "1", "st", " ", "order", " ",
"perturbation", " ", "term", " ", "of", " ", "the", " ", "metric"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.884859039906218*^9, 3.884859067418832*^9}, {
3.884989133331237*^9, 3.884989146838271*^9}, {3.885008492351001*^9,
3.8850085022496243`*^9}, 3.8850128107159643`*^9, {3.885014355174515*^9,
3.885014370156023*^9}, 3.885213715050398*^9},
CellLabel->"In[19]:=",ExpressionUUID->"f722540b-c19e-4a31-8b3e-22ffcf1a1e2c"],
Cell[TextData[{
StyleBox["Not only can we view the perturbation of the metric but also of \
the Christoffel symbols and the Curvature tensors. \nIn order to obtain the \
perturbation of the Curvature tensors, we write them in terms of the metric \
and its partial derivatives and apply ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ExpandPerturbation.",
FontFamily->"Courier"],
StyleBox["\nTo ensure that the expressions are evaluated in the flat \
background, we use ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ToFlat.",
FontFamily->"Courier"]
}], "Text",
CellChangeTimes->{
3.885002348485387*^9, {3.885002633941455*^9, 3.885002656413747*^9}, {
3.885003482366107*^9,
3.885003578160152*^9}},ExpressionUUID->"8275f1dd-7831-4f20-b076-\
f1f782dfe5c1"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "the", " ", "Christoffel", " ", "symbol", " ", "upto", " ",
"linear", " ", "order", " ", "perturbation", " ", "in", " ", "flat", " ",
"background", " ", "using", " ", "ToFlat"}], "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885002663351892*^9, 3.88500276491615*^9}, {
3.885008519264843*^9, 3.885008519508008*^9}, {3.885014458064966*^9,
3.885014469162444*^9}, {3.8850145199430017`*^9, 3.88501453427324*^9},
3.8852137228083887`*^9},ExpressionUUID->"bb890f00-f503-42df-95db-\
a2469cfdb169"],
Cell[TextData[{
StyleBox["The metric",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[" g",
FontFamily->"TeX Gyre Bonum Math",
FontWeight->"Bold"],
StyleBox[" above can be thought of as the Minkowski metric. \nCompute the \
Riemann tensor in linearized theory. Rather than using ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ToFlat, ",
FontFamily->"Courier"],
StyleBox["another option is to use ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ExpandFlat.",
FontFamily->"Courier"],
StyleBox[" Verify the output with your answer to Q1 in tut1. ",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{
3.885002436480506*^9, {3.885002794486249*^9, 3.885002878237937*^9}, {
3.885003618692051*^9, 3.885003628702856*^9}, 3.885014435177718*^9, {
3.88501449636823*^9,
3.885014497248169*^9}},ExpressionUUID->"467049de-db31-4d88-a9a4-\
b5019739a329"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "the", " ", "Riemann", " ", "tensor", " ", "upto", " ",
"linear", " ", "order", " ", "perturbation", " ", "in", " ", "flat", " ",
"background", " ", "using", " ", "ExpandFlat"}], "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885002948494206*^9, 3.885002964862495*^9}, {
3.885008525183916*^9, 3.885008525561327*^9}, {3.885014447817245*^9,
3.885014462113763*^9}, {3.885014503964596*^9, 3.8850145166929007`*^9},
3.8852137354491577`*^9},ExpressionUUID->"3417821d-1b50-4dc5-8616-\
b8027817ded9"],
Cell[TextData[{
StyleBox["Notice that, ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ToFlat",
FontFamily->"Courier"],
StyleBox[" acts after the ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["Perturbation",
FontFamily->"Courier"],
StyleBox[" operator but ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ExpandFlat ",
FontFamily->"Courier"],
StyleBox["does not require that.\nCompute the Ricci and the Einstein tensors \
in linearized theory. Verify the output with your answer to Q2 in tut1.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{
3.8850025429799023`*^9, {3.885002640321896*^9, 3.885002649072596*^9},
3.885002831482532*^9, 3.885002911034191*^9, {3.885003669877174*^9,
3.8850036777393837`*^9}, {3.885012856265189*^9, 3.885012856414503*^9}, {
3.885014481159186*^9, 3.885014490601265*^9}, {3.8850145601437283`*^9,
3.885014667589511*^9}},ExpressionUUID->"ee14279e-1753-4237-95e5-\
cddc8d008b64"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "the", " ", "Ricci", " ", "tensor", " ", "upto", " ",
"first", " ", "order", " ", "in", " ", "flat", " ", "background"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885003002066174*^9, 3.885003051504236*^9},
3.885003095606883*^9, {3.8850039345212812`*^9, 3.885003935663292*^9}, {
3.885008530213255*^9, 3.885008530353785*^9}, {3.885014677101755*^9,
3.8850146787971983`*^9},
3.8852137403137197`*^9},ExpressionUUID->"22d930eb-7072-404f-a0df-\
c74bdd337287"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "the", " ", "Ricci", " ", "scalar", " ", "upto", " ",
"first", " ", "order", " ", "in", " ", "flat", " ", "background"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885003192011024*^9, 3.885003230340558*^9}, {
3.8850036903479033`*^9, 3.885003695794788*^9}, {3.885003899647554*^9,
3.88500391747756*^9}, {3.885008534803012*^9, 3.885008534962392*^9}, {
3.885014716785042*^9, 3.885014719757032*^9},
3.885213743878726*^9},ExpressionUUID->"79441b12-b2df-4be1-b500-\
e4dabc82ab62"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Display", " ", "the", " ", "Einstein", " ", "tensor", " ", "upto", " ",
"first", " ", "order", " ", "in", " ", "flat", " ", "background"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8850030922474613`*^9, 3.885003148651908*^9}, {
3.885003241191902*^9, 3.88500324282782*^9}, {3.8850036993958683`*^9,
3.8850037040188913`*^9}, {3.885003852614039*^9, 3.8850038919936333`*^9},
3.8850039759330397`*^9, {3.885008538968623*^9, 3.8850085395233803`*^9}, {
3.885014727540008*^9, 3.885014729600469*^9},
3.8852137475198193`*^9},ExpressionUUID->"124a6ad6-4c23-4639-b5a2-\
312239b733e3"]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[StyleBox["Curvature tensors about a perturbed non-flat \
background metric", "Section"]], "Section",
CellChangeTimes->{{3.8848622047056723`*^9, 3.884862214786113*^9}, {
3.884862255888465*^9, 3.8848622597058783`*^9}, {3.8850080547038317`*^9,
3.885008071222827*^9}, {3.885008130602063*^9, 3.885008137505271*^9}, {
3.88500832978496*^9,
3.885008341430917*^9}},ExpressionUUID->"ab2e9c18-f157-48b4-a139-\
df1e4cbea159"],
Cell[TextData[{
StyleBox["Associated with each order of perturbation of the metric, are \
different orders of ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["h",
FontFamily->"Courier"],
StyleBox[". Each of these are denoted by Label Indices as ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["LI[order]",
FontFamily->"Courier"],
StyleBox[". Since we are interested only in the first order ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["h",
FontFamily->"Courier"],
StyleBox[", we define a Background Field Method, which will ensure that only \
nonzero perturbation to the metric tensor is the one that is first order in ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["h",
FontFamily->"Courier"],
StyleBox[". This can be implemented wherever required.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.885001735777709*^9, 3.885001791703446*^9}, {
3.8850018252257442`*^9, 3.885001977049684*^9}, {3.885002015099771*^9,
3.885002036638914*^9}, {3.885002103846447*^9, 3.8850021316216297`*^9},
3.885010766294428*^9, {3.885014775549171*^9,
3.885014818524218*^9}},ExpressionUUID->"8677752d-624e-495f-81cf-\
2d47ee26556b"],
Cell[BoxData[
RowBox[{
RowBox[{"bgf", "=",
RowBox[{
RowBox[{"h", "[",
RowBox[{
RowBox[{"LI", "[", "order_", "]"}], ",", "__"}], "]"}],
"\[RuleDelayed]",
RowBox[{"0", "/;",
RowBox[{"order", ">", "1"}]}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.8850017284548807`*^9, 3.885001729902356*^9}, {
3.8850017956994553`*^9, 3.885001814501029*^9}},
CellLabel->"In[26]:=",ExpressionUUID->"654ff8ee-9b51-4dc1-9a67-126b661da5c6"],
Cell[TextData[{
StyleBox["Compute the explicit expressions of higher order perturbations of \
the Ricci tensor. ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["Verify the output with your answer to Q4 in tut2.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884866073138763*^9, 3.884866117465519*^9}, {
3.8850083012582283`*^9, 3.8850083232299547`*^9}, {3.885009007291044*^9,
3.885009071319249*^9},
3.8850148419476757`*^9},ExpressionUUID->"4b05e6d2-3344-4daf-89ac-\
02ec358b3a26"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Get", " ", "the", " ", "unperturbed", " ", "Ricci", " ", "tensor"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8849860555205183`*^9, 3.884986085265896*^9}, {
3.8849876305857964`*^9, 3.88498765670711*^9}, {3.8849892637322598`*^9,
3.884989336485875*^9}, {3.8850091156031446`*^9, 3.885009144269493*^9}, {
3.885009199057263*^9, 3.885009200401009*^9}, {3.885009336250575*^9,
3.885009346070129*^9}, {3.885014855100567*^9, 3.88501485847721*^9}, {
3.8850850659020557`*^9, 3.8850851440280933`*^9},
3.885213755425069*^9},ExpressionUUID->"22a2ede4-8513-4e1e-b6e0-\
4285eb26b51b"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Get", " ", "the", " ", "first", " ", "order", " ", "perturbation", " ",
"term", " ", "in", " ", "Ricci"}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.884985846997643*^9, 3.884985924024393*^9}, {
3.884985970045774*^9, 3.884986003705257*^9}, {3.884987668162566*^9,
3.884987670429159*^9}, {3.884987732742255*^9, 3.884987752017778*^9}, {
3.8849893430134*^9, 3.884989377736546*^9}, {3.884989438807329*^9,
3.884989441684196*^9}, {3.885009193894743*^9, 3.8850091970834627`*^9}, {
3.885009238690556*^9, 3.88500932013363*^9}, {3.885009363024508*^9,
3.885009394649275*^9}, {3.885085159349832*^9, 3.8850852126171417`*^9},
3.885213759379983*^9},ExpressionUUID->"69af80ac-03b1-411b-b99f-\
3bd5f17df8c5"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Get", " ", "the", " ", "second", " ", "order", " ", "perturbation", " ",
"term", " ", "in", " ", "Ricci"}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.884989456072956*^9, 3.884989468621854*^9}, {
3.885009190656687*^9, 3.8850091919946423`*^9}, {3.88500955530645*^9,
3.8850095592101593`*^9},
3.885213765326827*^9},ExpressionUUID->"ca2abc19-8851-4eea-94a1-\
dd72355b97eb"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Remove", " ", "the", " ", "LI"}], ">",
RowBox[{"1", " ", "perturbation", " ", "terms", " ", "in", " ", "h"}]}],
" ", "*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.7505490909047956`*^9, 3.750549095512829*^9}, {
3.752048774705641*^9, 3.752048961548612*^9}, {3.7610440631450033`*^9,
3.761044064658997*^9}, {3.884990124834599*^9, 3.884990128717546*^9},
3.884990227007484*^9, {3.884990272562689*^9, 3.884990318289212*^9}, {
3.885009183479638*^9, 3.8850091882281933`*^9}, {3.885009535847559*^9,
3.885009571233719*^9},
3.8852137704423447`*^9},ExpressionUUID->"8293e21a-3036-45f6-8d36-\
21cd0017c68c"]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
Gauge invariance of Riemann tensor linearized over flat metric\
\>", "Section",
CellChangeTimes->{{3.884921103492958*^9, 3.8849211164588737`*^9}, {
3.884930023791937*^9, 3.884930026763686*^9}, 3.884960034497631*^9, {
3.884990796343252*^9, 3.884990809462638*^9}, 3.885009985807192*^9, {
3.885011509535932*^9, 3.8850115121509457`*^9}, {3.885012159730644*^9,
3.885012195799246*^9}},ExpressionUUID->"1b461964-7a3b-4114-9d14-\
095a04e3813f"],
Cell[TextData[StyleBox["We consider a transformation of coordinates \
x\[Rule]x+ \[Xi](x), where \[Xi] is a vector field. \nDefine a vector field \
\[Xi].",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.8850116852701*^9, 3.885011747288734*^9}, {
3.8850149284525337`*^9,
3.885014935042844*^9}},ExpressionUUID->"6b3af96d-2382-4fa6-8109-\
5bb8685c5f99"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Define", " ", "a", " ", "contravariant", " ", "vector", " ", "field", " ",
"\[Xi]", " ", "on", " ", "M", " ", "using", " ", "DefTensor"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885014916327965*^9, 3.885014917901677*^9},
3.885213775357636*^9},ExpressionUUID->"ad7b1eeb-6054-4859-91f4-\
dc541e5ee681"],
Cell[TextData[{
StyleBox[ButtonBox["Transformation rules",
BaseStyle->"Hyperlink",
ButtonData->{
URL["https://reference.wolfram.com/language/howto/WorkWithRules.html"],
None},
ButtonNote->
"https://reference.wolfram.com/language/howto/WorkWithRules.html"],
FontFamily->"TeX Gyre Bonum Math"],
StyleBox[" in the Wolfram Language let you set local values for symbols, \
functions, and all other types of expressions. Using rules provides a \
powerful and extensible method to replace all or part of another expression \
with the value you specify.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{
3.885011201724017*^9, {3.8850112619601107`*^9, 3.8850112739640303`*^9}, {
3.8850113948334723`*^9,
3.8850113948376493`*^9}},ExpressionUUID->"d4466e28-67d7-4515-a8af-\
c4f333f68be2"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Define", " ", "function", " ", "to", " ", "apply", " ", "some", " ",
"rule"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ApplyRule", "[", "expr_", "]"}], ":=",
RowBox[{"MakeRule", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"List", "@@", "expr"}], "]"}], ",",
RowBox[{"MetricOn", "\[Rule]", "All"}], ",",
RowBox[{"ContractMetrics", "\[Rule]", "True"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.884991069236877*^9, 3.884991087637248*^9}, {
3.8850276501692266`*^9, 3.885027650514708*^9}, {3.885027696030609*^9,
3.885027696340473*^9}, 3.88508529483309*^9, {3.885085399601656*^9,
3.885085403135582*^9}},ExpressionUUID->"84c5c59c-eb0d-4ce1-a40c-\
34541043cac5"],
Cell[TextData[StyleBox["Define a rule for the Gauge Transformation of the \
first order perturbation metric. ",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.8850114451133823`*^9, 3.885011501771667*^9}, {
3.885011825357566*^9, 3.885011839131509*^9}, {3.8850124069555817`*^9,
3.885012407237261*^9},
3.8850149658924522`*^9},ExpressionUUID->"7b2ece81-5abc-486c-8515-\
c2670852168d"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Define", " ", "the", " ", "gauge", " ", "transformation"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8849910928510017`*^9, 3.884991103045985*^9}, {
3.885085405140929*^9, 3.885085406225404*^9},
3.8852137935482683`*^9},ExpressionUUID->"2322e0e2-232d-4860-a40c-\
75ba8617d301"],
Cell[TextData[{
StyleBox["Note that this rule has only been defined and not applied. We will \
apply this rule afterwards using ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ApplyRule. ",
FontFamily->"Courier"],
StyleBox["\nWe expect the Riemann tensor to remain invariant under Gauge \
transformation.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{
3.885011834483636*^9, {3.8850118701029673`*^9, 3.885011905542952*^9}, {
3.8850124036699963`*^9, 3.885012414146928*^9}, {3.885012514707672*^9,
3.8850125256235437`*^9},
3.8850853204431067`*^9},ExpressionUUID->"e129382b-f7f1-4504-8951-\
b7d149bd40e9"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Expansion", " ", "of", " ", "Riemann", " ", "tensor"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.412482735569118*^9, 3.4124827572186728`*^9}, {
3.732521225392912*^9, 3.7325212261848173`*^9}, {3.827918697066889*^9,
3.8279187193597116`*^9}, {3.833877098995467*^9, 3.833877129887135*^9},
3.884990850603977*^9, {3.884990895956211*^9, 3.884990943806507*^9}, {
3.884991156959298*^9, 3.884991165630138*^9}, {3.884991417184586*^9,
3.8849914296006947`*^9}, {3.8850119336397743`*^9, 3.885011935343802*^9}, {
3.885085408031725*^9, 3.88508540925289*^9},
3.8852137965405073`*^9},ExpressionUUID->"481238a1-0547-433c-8e9c-\
e1c263161e85"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Gauge", "-",
RowBox[{"Transformed", " ", "Riemann", " ", "tensor"}]}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.884990995610903*^9, 3.8849910606385927`*^9}, {
3.884991347384439*^9, 3.88499136570695*^9}, {3.8850122442542973`*^9,
3.885012245151721*^9}, 3.885012275951646*^9, 3.885085329076502*^9, {
3.885085410770282*^9, 3.88508541214296*^9},
3.8852138006485147`*^9},ExpressionUUID->"f0e85fd0-1584-4c20-8a4a-\
099bd397496c"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Take", " ", "the", " ", "difference", " ", "between", " ", "the", " ",
"Riemann", " ", "tensor", " ", "before", " ", "and", " ", "after", " ",
"Gauge", " ", "transformation"}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8850122509445763`*^9, 3.885012257391663*^9}, {
3.885085368306703*^9, 3.8850853960799837`*^9},
3.885213804141478*^9},ExpressionUUID->"8db5f754-d1fc-48b9-a7f9-\
f6cf561c2a40"]
}, Open ]],
Cell[CellGroupData[{
Cell["Trace-reversed Metric perturbations in the Lorentz gauge", "Section",
CellChangeTimes->{{3.885023032647265*^9, 3.88502303994722*^9}, {
3.885023070767106*^9, 3.885023076993011*^9}, {3.8855566949769917`*^9,
3.885556706079712*^9}},ExpressionUUID->"a9f1b406-b488-408a-9d6d-\
249626e5c400"],
Cell[TextData[StyleBox["Define a rule for the trace reversed perturbation \
metric. ",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.885533385828972*^9, 3.885533390712277*^9}, {
3.885533427249958*^9, 3.885533430186997*^9},
3.885556952516884*^9},ExpressionUUID->"99d8989b-5537-46c1-8b34-\
efb3b69cd883"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Define", " ", "the", " ", "Trace", " ", "reversed", " ", "metric"}], " ",
"*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885023062325989*^9, 3.885023101062244*^9}, {
3.885023864814004*^9, 3.885023949912217*^9}, {3.885023991430346*^9,
3.885024046511711*^9}, {3.885024362298811*^9, 3.885024363662979*^9}, {
3.8850250118733797`*^9, 3.885025014672441*^9}, 3.885026563285246*^9, {
3.8855334041848097`*^9, 3.885533412432755*^9}, {3.885558257579378*^9,
3.885558266381925*^9}, {3.885558524361246*^9, 3.8855585254379673`*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"d19a1a7a-e235-4aaf-ae47-cfef77a5f929"],
Cell[TextData[StyleBox["Define a rule for the Lorentz gauge.",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.885533418362974*^9, 3.8855334194706*^9}, {
3.8855334723642*^9, 3.8855335399217863`*^9}, {3.885533600477434*^9,
3.885533603872171*^9}, 3.8855337291927834`*^9,
3.885556948374671*^9},ExpressionUUID->"8880569f-7260-4ba1-83ac-\
f6c21e796d06"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Define", " ", "the", " ", "Lorentz", " ", "gauge", " ", "condition"}],
" ", "*)"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885024506103613*^9, 3.885024584460681*^9}, {
3.885024911429165*^9, 3.885024930577778*^9}, {3.885025111877721*^9,
3.885025112011738*^9}, {3.885025237033249*^9, 3.885025248547535*^9}, {
3.885026425657276*^9, 3.885026441629496*^9}, 3.885026558979225*^9, {
3.885026925195912*^9, 3.8850269752894793`*^9}, {3.885027953030526*^9,
3.885027953141371*^9}, {3.885028468091971*^9, 3.8850284764441767`*^9}, {
3.88553297042605*^9, 3.8855330341661797`*^9}, {3.8855337165403757`*^9,
3.885533744059297*^9},
3.8855582699609003`*^9},ExpressionUUID->"f527c72d-3a87-4893-9c21-\
7f5ce02806d9"],
Cell[TextData[StyleBox["Expand the Einstein tensor to the first order in \
perturbation",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.885533925712144*^9, 3.885533925717445*^9}, {
3.8855339783061943`*^9,
3.885534019535892*^9}},ExpressionUUID->"e419af7b-4043-40c8-9a7a-\
dc76f1fd26d7"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.88502480527136*^9, 3.8850248063749323`*^9}, {
3.885025127817752*^9, 3.885025169534375*^9}, {3.8850272985866137`*^9,
3.885027317356041*^9}, {3.885027958655862*^9, 3.885028002162801*^9}, {
3.885533232232437*^9, 3.885533233207605*^9}, 3.8855563668664703`*^9, {
3.885556823593342*^9, 3.885556857410631*^9}, {3.8855568930220633`*^9,
3.885556915433578*^9}, {3.885557534943879*^9, 3.885557539830474*^9},
3.8855582769679193`*^9},ExpressionUUID->"646625fb-c5ad-46b1-8442-\
ad0351ae1cdf"],
Cell[TextData[StyleBox["Write the perturbed Einstein tensor in terms of the \
trace reversed metric.",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.8855340412890987`*^9, 3.885534075804666*^9}, {
3.88555646193295*^9,
3.885556463765729*^9}},ExpressionUUID->"e6536c74-f5f7-4a94-a5f8-\
e271c90b6917"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Apply", " ", "the", " ", "rule", " ", "for", " ", "trace"}], "-",
RowBox[{"reversed", " ", "metric"}]}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885024345672886*^9, 3.885024353643368*^9}, {
3.8850247995027847`*^9, 3.885024834586129*^9}, {3.885024969047707*^9,
3.885024995719431*^9}, {3.8850251769519253`*^9, 3.885025195805573*^9}, {
3.885025282961417*^9, 3.885025285494382*^9}, {3.885026761080182*^9,
3.8850267689862432`*^9}, {3.885027093036652*^9, 3.885027104306294*^9},
3.885027365396867*^9, {3.8850277960598516`*^9, 3.8850278100623903`*^9}, {
3.885028057593144*^9, 3.8850280666548643`*^9}, {3.885028139422147*^9,
3.8850281758943*^9}, 3.885085346102648*^9, {3.8855327866511173`*^9,
3.8855327939605513`*^9}, {3.885534077600255*^9, 3.8855340897772703`*^9}, {
3.885557548269515*^9, 3.885557578158127*^9},
3.885558285066401*^9},ExpressionUUID->"0e857427-9d5f-443f-ae13-\
3f19bc6949cb"],
Cell[TextData[{
StyleBox["Use ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["ContractMetric",
FontFamily->"Courier"],
StyleBox[" until all the terms are contracted.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.885534115162315*^9, 3.88553413598601*^9}, {
3.88555627028238*^9, 3.885556313495713*^9}, {3.885558302518173*^9,
3.885558336252973*^9}},ExpressionUUID->"74ba5450-94d1-49f2-b4a4-\
0346cb83e7fd"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.885028106108192*^9, 3.88502812577032*^9}, {
3.8850282200293093`*^9, 3.885028221705822*^9}, {3.8855570825150347`*^9,
3.885557097780971*^9}, {3.885557588802628*^9, 3.8855576049158792`*^9},
3.885558289245337*^9},ExpressionUUID->"53c60ebe-a906-4e68-8a1a-\
bdda437dc21a"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.885557146585355*^9, 3.8855571863689938`*^9}, {
3.8855576104408703`*^9, 3.885557623910165*^9},
3.885558357692596*^9},ExpressionUUID->"f1390d5c-fbec-4182-8255-\
7e6719460069"],
Cell[TextData[StyleBox["Apply the Lorentz gauge condition.",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.885558381581572*^9,
3.885558397382906*^9}},ExpressionUUID->"3a4b96b1-e91f-41aa-8312-\
a8e38926e11e"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.885024840506625*^9, 3.885024897822804*^9}, {
3.885024946727928*^9, 3.88502494897789*^9}, {3.8850252770384693`*^9,
3.885025279314282*^9}, {3.885026494571484*^9, 3.8850265125540867`*^9}, {
3.8850265781032257`*^9, 3.885026586854105*^9}, {3.885026770564714*^9,
3.88502677309173*^9}, {3.885027020789895*^9, 3.8850270808280687`*^9}, {
3.885027423478138*^9, 3.885027429508647*^9}, {3.885027768429039*^9,
3.885027787393751*^9}, 3.885028292590228*^9, 3.885085349494996*^9, {
3.885533082795862*^9, 3.885533088919396*^9}, 3.885557421028235*^9, {
3.885557650860832*^9, 3.885557690968754*^9}, {3.88555842380995*^9,
3.885558426369391*^9}},ExpressionUUID->"f656430c-b556-4d9d-8412-\
84d79890e205"],
Cell[TextData[StyleBox["As you can see that MATHEMATICA doesn\
\[CloseCurlyQuote]t know to apply Lorentz gauge condition under commutation \
of partial derivatives. So define a rule for the commuted Lorentz gauge.",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.885557323428302*^9,
3.8855573661180573`*^9}},ExpressionUUID->"de0ff958-5598-4e69-a6e7-\
f1c875c0060c"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Define", " ", "a", " ", "rule", " ", "for", " ", "the", " ", "commuted",
" ", "Lorentz", " ", "gauge"}], " ", "*)"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.885557844581134*^9, 3.88555785013531*^9},
3.8855581642006807`*^9,
3.885558436758066*^9},ExpressionUUID->"c1545bf1-a77c-4623-a297-\
66932a675ced"],
Cell[TextData[StyleBox["Apply the commuted Lorentz gauge condition.",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.885558381581572*^9, 3.885558397382906*^9}, {
3.885558448357451*^9,
3.885558452257477*^9}},ExpressionUUID->"d5001955-a50c-464b-bf29-\
074024023944"],
Cell[BoxData[""], "Input",
CellChangeTimes->{
3.88555751657885*^9, {3.8855577004801188`*^9, 3.885557708749981*^9},
3.885558482126107*^9},ExpressionUUID->"1f5a0767-cac1-4051-9093-\
7b89172327a3"]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
(optional) : GR calculations in a coordinate basis without packages\
\>", "Section",
CellChangeTimes->{{3.884876372624441*^9, 3.884876375863749*^9}, {
3.884876440609164*^9, 3.8848764636076527`*^9}, {3.884910029153553*^9,
3.8849100396232777`*^9}, {3.884921677726839*^9, 3.884921679974163*^9}, {
3.884964570796677*^9, 3.884964599773075*^9}, {3.8849647189409733`*^9,
3.884964749965152*^9}, {3.8849919054177103`*^9, 3.884991911513878*^9}, {
3.885015076108*^9, 3.8850150967460423`*^9}, {3.885015152962513*^9,
3.8850151532431707`*^9}},ExpressionUUID->"ba8012bb-1c54-457e-95c4-\
48f82679c05e"],
Cell[TextData[{
StyleBox["Here we define the perturbation metric in the TT-gauge using \
matrix notation in MATHEMATICA. \nFirst we specify the coordinates and the \
explicit form of the perturbation metric in those coordinates. \nWe also \
define the background metric. \nOur convention here is that ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["d",
FontFamily->"TeX Gyre Bonum Math",
FontSlant->"Italic"],
StyleBox[" will denote a covariant index and ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["U",
FontFamily->"TeX Gyre Bonum Math",
FontSlant->"Italic"],
StyleBox[" will denote a contravariant index.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.884877060952383*^9, 3.8848771406673307`*^9}, {
3.8850854262445383`*^9, 3.88508547607533*^9}, {3.8850855071531973`*^9,
3.885085584505064*^9}},ExpressionUUID->"fe309883-b466-4c68-9cc6-\
acb2232e630a"],
Cell[BoxData[{
RowBox[{
RowBox[{"coord", " ", "=", " ",
RowBox[{"{",
RowBox[{"t", ",", "x", ",", "y", ",", " ", "z"}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"hdd", "=",
RowBox[{"\[Epsilon]", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"hp", "[",
RowBox[{"t", ",", " ", "x", ",", " ", "y", ",", " ", "z"}], "]"}],
",",
RowBox[{"hc", "[",
RowBox[{"t", ",", "x", " ", ",", " ", "y", ",", " ", "z"}], "]"}],
",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"hc", "[",
RowBox[{"t", ",", " ", "x", ",", " ", "y", ",", " ", "z"}], "]"}],
",", " ",
RowBox[{"-",
RowBox[{"hp", "[",
RowBox[{"t", ",", " ", "x", ",", " ", "y", ",", " ", "z"}], "]"}]}],
",", " ", "0"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"bdd", " ", "=", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "1", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "1", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0", ",", "1"}], "}"}]}], "}"}]}],
";"}]}], "Input",
CellChangeTimes->{{3.884876578071289*^9, 3.884876590571506*^9}, {
3.884876635032894*^9, 3.8848766539158792`*^9}, {3.884876808157206*^9,
3.8848768216158648`*^9}, {3.884909054054788*^9, 3.884909057475285*^9}, {
3.884909473645875*^9, 3.884909502502667*^9}, {3.8849095360569277`*^9,
3.884909548164818*^9}, {3.885085489381544*^9, 3.885085501405695*^9}},
CellLabel->"In[62]:=",ExpressionUUID->"e4e995f1-074d-4896-b644-78b08d328af8"],
Cell[TextData[{
StyleBox["We can now get the perturbed metric using ",
FontFamily->"TeX Gyre Bonum Math"],
StyleBox["Series",
FontFamily->"Courier"],
StyleBox[" function with parameter \[Epsilon] lying between 0 and 1.",
FontFamily->"TeX Gyre Bonum Math"]
}], "Text",
CellChangeTimes->{{3.885085613366517*^9,
3.885085675551119*^9}},ExpressionUUID->"d8b25128-e1a5-405e-8462-\
92f83650a6e4"],
Cell[BoxData[{
RowBox[{
RowBox[{"gdd", "=",
RowBox[{"Series", "[",
RowBox[{
RowBox[{"bdd", "+", "hdd"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "0", ",", "1"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"gUU", "=",
RowBox[{"Inverse", "[", "gdd", "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"gdet", "=",
RowBox[{"FullSimplify", "[",
RowBox[{"Det", "[", "gdd", "]"}], "]"}]}], ";"}], " "}]}], "Input",
CellChangeTimes->{{3.8848766983514957`*^9, 3.884876712984598*^9}, {
3.8848768186667147`*^9, 3.884876837731639*^9}, {3.884877198772111*^9,
3.8848772262647963`*^9}, {3.884910827870572*^9, 3.884910828125744*^9}, {
3.885085591134918*^9, 3.885085591392536*^9}},
CellLabel->"In[65]:=",ExpressionUUID->"3637b842-4df9-4e40-9e33-0ad9d9887d59"],
Cell[TextData[StyleBox["Christoffel symbols",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.884877245221979*^9, 3.884877250663397*^9},
3.8849108329404783`*^9,
3.885015116916458*^9},ExpressionUUID->"4f56bc75-051b-41e1-80b7-\
0ebe7471ba32"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"GammaUdd", "[",
RowBox[{"i_", ",", "k_", ",", "l_"}], "]"}], ":=",
RowBox[{"Series", "[",
RowBox[{
RowBox[{
FractionBox["1", "2"],
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"gUU", "[",
RowBox[{"[",
RowBox[{"i", ",", "j"}], "]"}], "]"}],
RowBox[{"(",
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"gdd", "[",
RowBox[{"[",
RowBox[{"j", ",", "k"}], "]"}], "]"}], ",",
RowBox[{"coord", "[",
RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "+",
RowBox[{"D", "[",
RowBox[{
RowBox[{"gdd", "[",
RowBox[{"[",
RowBox[{"j", ",", "l"}], "]"}], "]"}], ",",
RowBox[{"coord", "[",
RowBox[{"[", "k", "]"}], "]"}]}], "]"}], "-",
RowBox[{"D", "[",
RowBox[{
RowBox[{"gdd", "[",
RowBox[{"[",
RowBox[{"l", ",", "k"}], "]"}], "]"}], ",",
RowBox[{"coord", "[",
RowBox[{"[", "j", "]"}], "]"}]}], "]"}]}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "dimension"}], "}"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "0", ",", "1"}], "}"}]}], "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.8848772698904667`*^9, 3.884877270570455*^9}},
CellLabel->"In[68]:=",ExpressionUUID->"7f4c4af9-3f0b-479d-bbb6-ee17f5fe7eff"],
Cell[TextData[StyleBox["Riemann tensor with only first index contravariant",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.8848773156334763`*^9,
3.884877327071561*^9}},ExpressionUUID->"453b3430-302b-43ba-ab9a-\
c63a0a7f8453"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"RUddd", "[",
RowBox[{"i_", ",", "j_", ",", "k_", ",", "l_"}], "]"}], ":=",
RowBox[{"Series", "[",
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"GammaUdd", "[",
RowBox[{"i", ",", "j", ",", "l"}], "]"}], ",",
RowBox[{"coord", "[",
RowBox[{"[", "k", "]"}], "]"}]}], "]"}], "-",
RowBox[{"D", "[",
RowBox[{
RowBox[{"GammaUdd", "[",
RowBox[{"i", ",", "k", ",", "j"}], "]"}], ",",
RowBox[{"coord", "[",
RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "+",
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"GammaUdd", "[",
RowBox[{"i", ",", "k", ",", "m"}], "]"}],
RowBox[{"GammaUdd", "[",
RowBox[{"m", ",", "l", ",", "j"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"m", ",", "1", ",", "dimension"}], "}"}]}], "]"}], "-",
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"GammaUdd", "[",
RowBox[{"i", ",", "l", ",", "m"}], "]"}],
RowBox[{"GammaUdd", "[",
RowBox[{"m", ",", "k", ",", "j"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"m", ",", "1", ",", "dimension"}], "}"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "0", ",", "1"}], "}"}]}], "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.884877333169804*^9, 3.884877338221264*^9}},
CellLabel->"In[69]:=",ExpressionUUID->"f1a91646-3253-4d6e-8c4a-6e4c8ca3aa57"],
Cell[TextData[StyleBox["Riemann tensor with two contravariant and two \
covariant indices",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.884909175254169*^9,
3.884909198312566*^9}},ExpressionUUID->"a8b7a800-3f00-4032-ad64-\
d81cce5d999d"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"RUdUd", "[",
RowBox[{"i_", ",", "j_", ",", "k_", ",", "l_"}], "]"}], ":=",
RowBox[{"Series", "[",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"gUU", "[",
RowBox[{"[",
RowBox[{"k", ",", "m"}], "]"}], "]"}],
RowBox[{"RUddd", "[",
RowBox[{"i", ",", "j", ",", "m", ",", "l"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"m", ",", "1", ",", "dimension"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "0", ",", "1"}], "}"}]}], "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.884909271977377*^9, 3.8849092725815887`*^9}},
CellLabel->"In[70]:=",ExpressionUUID->"b8aef04b-afea-4dd1-908b-b7355bed81be"],
Cell[TextData[StyleBox["Ricci tensor",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.884909085559965*^9,
3.884909088162718*^9}},ExpressionUUID->"91b90885-0cf6-433d-b9a0-\
d8203eabaa6c"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"Riccidd", "[",
RowBox[{"i_", ",", "j_"}], "]"}], ":=",
RowBox[{"Series", "[",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{"RUddd", "[",
RowBox[{"m", ",", "i", ",", "m", ",", "j"}], "]"}], ",",
RowBox[{"{",
RowBox[{"m", ",", "1", ",", "dimension"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "0", ",", "1"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"RicciUd", "[",
RowBox[{"i_", ",", "j_"}], "]"}], ":=",
RowBox[{"Series", "[",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"gUU", "[",
RowBox[{"[",
RowBox[{"i", ",", "m"}], "]"}], "]"}],
RowBox[{"Riccidd", "[",
RowBox[{"m", ",", "j"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"m", ",", "1", ",", "dimension"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "0", ",", "1"}], "}"}]}], "]"}]}],
";"}]}], "Input",
CellChangeTimes->{{3.884876470221298*^9, 3.884876497741456*^9}, {
3.88487653177859*^9, 3.884876568833219*^9}, {3.884876675374901*^9,
3.884876684390345*^9}, 3.884877238858942*^9, {3.884877303910681*^9,
3.884877309856915*^9}, 3.8848792121773787`*^9, 3.884908845137323*^9,
3.8849090814263887`*^9, 3.88490917195422*^9, {3.884909243182876*^9,
3.884909247046891*^9}, {3.8849092773204947`*^9, 3.884909282852882*^9}},
CellLabel->"In[71]:=",ExpressionUUID->"de77c234-5c73-44cf-bfa1-f91e017c843c"],
Cell[TextData[StyleBox["If we now want to display the components of any \
indexed object in matrix form, use Table.",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.885085705944091*^9,
3.885085768231636*^9}},ExpressionUUID->"9a9dea78-889b-427b-9102-\
a09134c2f5c3"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"GammaUdd", "[",
RowBox[{"i", ",", "j", ",", "3"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "4"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", " ", "4"}], "}"}]}], "]"}], "//",
"FullSimplify"}], "//", "MatrixForm"}]], "Input",
CellChangeTimes->{{3.843564740328498*^9, 3.843564764575562*^9}, {
3.843564829580987*^9, 3.843564829730996*^9}, {3.884909679560705*^9,
3.8849097771653633`*^9}, {3.884909814099069*^9, 3.884909835703127*^9}, {
3.884964658537986*^9, 3.884964660275353*^9}},
CellLabel->"In[73]:=",ExpressionUUID->"2fd7fe6a-70f5-4561-b741-02f642ca6908"],
Cell[TextData[StyleBox["Ricci scalar",
FontFamily->"TeX Gyre Bonum Math"]], "Text",
CellChangeTimes->{{3.884909249033296*^9,
3.884909251697793*^9}},ExpressionUUID->"9b6efd0b-88ed-4a50-ae27-\
6ea51a41d511"],
Cell[BoxData[
RowBox[{"R", "=",
RowBox[{
RowBox[{"Series", "[",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"gUU", "[",
RowBox[{"[",
RowBox[{"i", ",", "j"}], "]"}], "]"}],
RowBox[{"Riccidd", "[",
RowBox[{"i", ",", "j"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "dimension"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "dimension"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "0", ",", "1"}], "}"}]}], "]"}], "//",
"FullSimplify"}]}]], "Input",
CellChangeTimes->{{3.884909255082135*^9, 3.8849092566200647`*^9}, {
3.8849093118561087`*^9, 3.884909315458728*^9}, 3.8849094258105516`*^9,
3.885086470764143*^9},
CellLabel->"In[76]:=",ExpressionUUID->"741acee4-2b50-4020-953c-2cec586fe0fe"]
}, Open ]]
}, Open ]]
},
WindowSize->{1199.4146341463415`, 621.6585365853659},
WindowMargins->{{0, Automatic}, {0, Automatic}},
TaggingRules-><|
"TryRealOnly" -> False, "ShowSpecialCharactersDockedCell" -> False|>,
Magnification:>1.1 Inherited,
FrontEndVersion->"13.0 for Linux x86 (64-bit) (February 4, 2022)",
StyleDefinitions->Notebook[{
Cell[
StyleData[
StyleDefinitions ->
FrontEnd`FileName[{"Report"}, "StandardReport.nb", CharacterEncoding ->
"UTF-8"]]]}, Visible -> False, FrontEndVersion ->
"13.0 for Linux x86 (64-bit) (February 4, 2022)", StyleDefinitions ->
"PrivateStylesheetFormatting.nb"],
ExpressionUUID->"10fefb0a-18d5-4308-ac23-662f8744cfa3"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 273, 4, 107, "Title",ExpressionUUID->"16c4c7ad-fbf6-4e75-889b-8bf5b6aeee14"],
Cell[856, 28, 198, 3, 37, "Subtitle",ExpressionUUID->"2fb7fc3c-72ce-464e-9c08-42dc526b3706"],
Cell[CellGroupData[{
Cell[1079, 35, 180, 3, 76, "Section",ExpressionUUID->"ed49cd83-5b9d-4c09-abce-60958bffab12"],
Cell[1262, 40, 2490, 62, 134, "Text",ExpressionUUID->"b531869a-08f0-44d9-8ff9-944b8cdc8f7d"]
}, Open ]],
Cell[CellGroupData[{
Cell[3789, 107, 244, 4, 76, "Section",ExpressionUUID->"1011d24e-9699-483a-961c-a9c7d6aa03d0"],
Cell[4036, 113, 464, 7, 33, "Text",ExpressionUUID->"f88ced20-8697-43cc-82b1-11e9078f084b"],
Cell[4503, 122, 367, 5, 44, "Input",ExpressionUUID->"05a28a2e-f912-48f1-8b20-0dc3c55bdd92"]
}, Open ]],
Cell[CellGroupData[{
Cell[4907, 132, 309, 5, 76, "Section",ExpressionUUID->"93408548-a522-4a1e-86e0-389db23d514a"],
Cell[5219, 139, 1791, 40, 76, "Text",ExpressionUUID->"9c43b05f-f2ef-46c9-a670-c32f9f2b20c3"],
Cell[7013, 181, 505, 9, 68, "Input",ExpressionUUID->"d43d5aa6-5f38-41ee-8e55-88be6499823c"],
Cell[7521, 192, 570, 10, 68, "Input",ExpressionUUID->"71e84643-86b0-40a0-825c-4debdb4beda2"],
Cell[8094, 204, 1145, 28, 97, "Text",ExpressionUUID->"54e70b7b-90c2-46d0-aa24-59a5c80d79e1"],
Cell[9242, 234, 484, 11, 68, "Input",ExpressionUUID->"f241b01c-b979-466d-a813-c8fa341136c2"],
Cell[9729, 247, 347, 6, 54, "Text",ExpressionUUID->"de7c8004-7c68-4606-8666-ec06de8fd43f"]
}, Open ]],
Cell[CellGroupData[{
Cell[10113, 258, 363, 6, 76, "Section",ExpressionUUID->"6905e0ef-33cd-4337-ae11-1ea40d821b4b"],
Cell[10479, 266, 287, 5, 33, "Text",ExpressionUUID->"20791885-6c3f-41bb-8a6f-1f3e8efa6fcc"],
Cell[10769, 273, 582, 10, 68, "Input",ExpressionUUID->"1770d4b1-101d-404f-bfee-bb7986235bba"],
Cell[11354, 285, 1079, 22, 121, "Text",ExpressionUUID->"aa2b4a6f-eccb-4546-b87d-0f5252f783b5"],
Cell[12436, 309, 1045, 30, 161, "Input",ExpressionUUID->"e1005954-8073-4add-873f-8e6d0d0eeb00"],
Cell[13484, 341, 211, 4, 33, "Text",ExpressionUUID->"9e104bbf-f346-4634-a60e-82f0e4f32a02"],
Cell[13698, 347, 511, 10, 68, "Input",ExpressionUUID->"b521d2a1-9b4f-4c43-b0d6-38c60637931e"],
Cell[14212, 359, 491, 12, 36, "Text",ExpressionUUID->"158605d3-7d8f-4df7-afb5-a31198afc0b7"],
Cell[14706, 373, 643, 11, 68, "Input",ExpressionUUID->"81811a93-601f-4597-a378-d98b9b2c591e"],
Cell[15352, 386, 443, 10, 36, "Text",ExpressionUUID->"18c60c9e-4cf5-4fa7-80b9-b12a7a938c86"],
Cell[15798, 398, 440, 9, 68, "Input",ExpressionUUID->"71fcb797-01d5-476c-aec8-0b36101c2a16"],
Cell[16241, 409, 436, 11, 36, "Text",ExpressionUUID->"774d69ad-046d-463b-8a41-76e3e2dbd649"],
Cell[16680, 422, 474, 9, 68, "Input",ExpressionUUID->"7cf35e74-ea09-46a8-8660-dcb0a9152373"]
}, Open ]],
Cell[CellGroupData[{
Cell[17191, 436, 407, 6, 76, "Section",ExpressionUUID->"1bacba40-3c8e-4f10-a605-b63b0db06f04"],
Cell[17601, 444, 1350, 33, 85, "Text",ExpressionUUID->"899e4fd3-f001-4651-99c6-e1a5c2443d88"],
Cell[18954, 479, 194, 3, 44, "Input",ExpressionUUID->"9711995f-2d1d-41f0-bc0f-563b2272ae27"]
}, Open ]],
Cell[CellGroupData[{
Cell[19185, 487, 406, 6, 76, "Section",ExpressionUUID->"b9a82a02-c84f-4826-83cb-afc2fad30eb1"],
Cell[19594, 495, 399, 11, 37, "Text",ExpressionUUID->"221be80c-86b0-4863-b2ec-c2bc2259ec06"],
Cell[19996, 508, 675, 13, 68, "Input",ExpressionUUID->"6f5d6a95-6b13-46ca-98e8-bed77c72d4a3"],
Cell[20674, 523, 651, 16, 80, "Text",ExpressionUUID->"23a5b391-8df2-4523-be7d-ec64887611b2"],
Cell[21328, 541, 656, 12, 68, "Input",ExpressionUUID->"698815bd-601f-4fc6-9a40-66e70dcf0c6d"],
Cell[21987, 555, 612, 11, 68, "Input",ExpressionUUID->"ef70df9e-4230-4419-98e0-2f526ac6f5d2"],
Cell[22602, 568, 442, 12, 37, "Text",ExpressionUUID->"6618013a-13d6-43b5-8302-b3a5b81e5f78"],
Cell[23047, 582, 600, 11, 68, "Input",ExpressionUUID->"f722540b-c19e-4a31-8b3e-22ffcf1a1e2c"],
Cell[23650, 595, 778, 18, 103, "Text",ExpressionUUID->"8275f1dd-7831-4f20-b076-f1f782dfe5c1"],
Cell[24431, 615, 608, 12, 68, "Input",ExpressionUUID->"bb890f00-f503-42df-95db-a2469cfdb169"],
Cell[25042, 629, 889, 23, 79, "Text",ExpressionUUID->"467049de-db31-4d88-a9a4-b5019739a329"],
Cell[25934, 654, 610, 12, 68, "Input",ExpressionUUID->"3417821d-1b50-4dc5-8616-b8027817ded9"],
Cell[26547, 668, 964, 23, 57, "Text",ExpressionUUID->"ee14279e-1753-4237-95e5-cddc8d008b64"],
Cell[27514, 693, 582, 12, 68, "Input",ExpressionUUID->"22d930eb-7072-404f-a0df-c74bdd337287"],
Cell[28099, 707, 601, 12, 68, "Input",ExpressionUUID->"79441b12-b2df-4be1-b500-e4dabc82ab62"],
Cell[28703, 721, 688, 13, 68, "Input",ExpressionUUID->"124a6ad6-4c23-4639-b5a2-312239b733e3"]
}, Open ]],
Cell[CellGroupData[{
Cell[29428, 739, 438, 7, 76, "Section",ExpressionUUID->"ab2e9c18-f157-48b4-a139-df1e4cbea159"],
Cell[29869, 748, 1181, 28, 85, "Text",ExpressionUUID->"8677752d-624e-495f-81cf-2d47ee26556b"],
Cell[31053, 778, 460, 12, 44, "Input",ExpressionUUID->"654ff8ee-9b51-4dc1-9a67-126b661da5c6"],
Cell[31516, 792, 520, 11, 33, "Text",ExpressionUUID->"4b05e6d2-3344-4daf-89ac-02ec358b3a26"],
Cell[32039, 805, 683, 13, 68, "Input",ExpressionUUID->"22a2ede4-8513-4e1e-b6e0-4285eb26b51b"],
Cell[32725, 820, 812, 15, 68, "Input",ExpressionUUID->"69af80ac-03b1-411b-b99f-3bd5f17df8c5"],
Cell[33540, 837, 477, 11, 68, "Input",ExpressionUUID->"ca2abc19-8851-4eea-94a1-dd72355b97eb"],
Cell[34020, 850, 714, 14, 68, "Input",ExpressionUUID->"8293e21a-3036-45f6-8d36-21cd0017c68c"]
}, Open ]],
Cell[CellGroupData[{
Cell[34771, 869, 461, 8, 76, "Section",ExpressionUUID->"1b461964-7a3b-4114-9d14-095a04e3813f"],
Cell[35235, 879, 377, 7, 54, "Text",ExpressionUUID->"6b3af96d-2382-4fa6-8109-5bb8685c5f99"],
Cell[35615, 888, 406, 9, 68, "Input",ExpressionUUID->"ad7b1eeb-6054-4859-91f4-dc541e5ee681"],
Cell[36024, 899, 828, 19, 54, "Text",ExpressionUUID->"d4466e28-67d7-4515-a8af-c4f333f68be2"],
Cell[36855, 920, 792, 18, 68, "Input",ExpressionUUID->"84c5c59c-eb0d-4ce1-a40c-34541043cac5"],
Cell[37650, 940, 412, 7, 33, "Text",ExpressionUUID->"7b2ece81-5abc-486c-8515-c2670852168d"],
Cell[38065, 949, 372, 8, 68, "Input",ExpressionUUID->"2322e0e2-232d-4860-a40c-75ba8617d301"],
Cell[38440, 959, 645, 15, 57, "Text",ExpressionUUID->"e129382b-f7f1-4504-8951-b7d149bd40e9"],
Cell[39088, 976, 739, 13, 68, "Input",ExpressionUUID->"481238a1-0547-433c-8e9c-e1c263161e85"],
Cell[39830, 991, 531, 11, 68, "Input",ExpressionUUID->"f0e85fd0-1584-4c20-8a4a-099bd397496c"],
Cell[40364, 1004, 502, 11, 68, "Input",ExpressionUUID->"8db5f754-d1fc-48b9-a7f9-f6cf561c2a40"]
}, Open ]],
Cell[CellGroupData[{
Cell[40903, 1020, 297, 4, 76, "Section",ExpressionUUID->"a9f1b406-b488-408a-9d6d-249626e5c400"],
Cell[41203, 1026, 331, 6, 33, "Text",ExpressionUUID->"99d8989b-5537-46c1-8b34-efb3b69cd883"],
Cell[41537, 1034, 696, 12, 68, "Input",ExpressionUUID->"d19a1a7a-e235-4aaf-ae47-cfef77a5f929"],
Cell[42236, 1048, 379, 6, 33, "Text",ExpressionUUID->"8880569f-7260-4ba1-83ac-f6c21e796d06"],
Cell[42618, 1056, 806, 15, 68, "Input",ExpressionUUID->"f527c72d-3a87-4893-9c21-7f5ce02806d9"],
Cell[43427, 1073, 312, 6, 33, "Text",ExpressionUUID->"e419af7b-4043-40c8-9a7a-dc76f1fd26d7"],
Cell[43742, 1081, 548, 8, 44, "Input",ExpressionUUID->"646625fb-c5ad-46b1-8442-ad0351ae1cdf"],
Cell[44293, 1091, 324, 6, 33, "Text",ExpressionUUID->"e6536c74-f5f7-4a94-a5f8-e271c90b6917"],
Cell[44620, 1099, 1028, 18, 68, "Input",ExpressionUUID->"0e857427-9d5f-443f-ae13-3f19bc6949cb"],
Cell[45651, 1119, 444, 11, 36, "Text",ExpressionUUID->"74ba5450-94d1-49f2-b4a4-0346cb83e7fd"],
Cell[46098, 1132, 326, 5, 44, "Input",ExpressionUUID->"53c60ebe-a906-4e68-8a1a-bdda437dc21a"],
Cell[46427, 1139, 229, 4, 44, "Input",ExpressionUUID->"f1390d5c-fbec-4182-8255-7e6719460069"],
Cell[46659, 1145, 232, 4, 33, "Text",ExpressionUUID->"3a4b96b1-e91f-41aa-8312-a8e38926e11e"],
Cell[46894, 1151, 762, 11, 44, "Input",ExpressionUUID->"f656430c-b556-4d9d-8412-84d79890e205"],
Cell[47659, 1164, 389, 6, 54, "Text",ExpressionUUID->"de0ff958-5598-4e69-a6e7-f1c875c0060c"],
Cell[48051, 1172, 398, 10, 68, "Input",ExpressionUUID->"c1545bf1-a77c-4623-a297-66932a675ced"],
Cell[48452, 1184, 290, 5, 33, "Text",ExpressionUUID->"d5001955-a50c-464b-bf29-074024023944"],
Cell[48745, 1191, 201, 4, 44, "Input",ExpressionUUID->"1f5a0767-cac1-4051-9093-7b89172327a3"]
}, Open ]],
Cell[CellGroupData[{
Cell[48983, 1200, 612, 10, 76, "Section",ExpressionUUID->"ba8012bb-1c54-457e-95c4-48f82679c05e"],
Cell[49598, 1212, 905, 20, 97, "Text",ExpressionUUID->"fe309883-b466-4c68-9cc6-acb2232e630a"],
Cell[50506, 1234, 2020, 52, 91, "Input",ExpressionUUID->"e4e995f1-074d-4896-b644-78b08d328af8"],
Cell[52529, 1288, 402, 10, 36, "Text",ExpressionUUID->"d8b25128-e1a5-405e-8462-92f83650a6e4"],
Cell[52934, 1300, 852, 21, 91, "Input",ExpressionUUID->"3637b842-4df9-4e40-9e33-0ad9d9887d59"],
Cell[53789, 1323, 268, 5, 33, "Text",ExpressionUUID->"4f56bc75-051b-41e1-80b7-0ebe7471ba32"],
Cell[54060, 1330, 1583, 44, 84, "Input",ExpressionUUID->"7f4c4af9-3f0b-479d-bbb6-ee17f5fe7eff"],
Cell[55646, 1376, 250, 4, 33, "Text",ExpressionUUID->"453b3430-302b-43ba-ab9a-c63a0a7f8453"],
Cell[55899, 1382, 1551, 42, 114, "Input",ExpressionUUID->"f1a91646-3253-4d6e-8c4a-6e4c8ca3aa57"],
Cell[57453, 1426, 263, 5, 33, "Text",ExpressionUUID->"a8b7a800-3f00-4032-ad64-d81cce5d999d"],
Cell[57719, 1433, 774, 21, 44, "Input",ExpressionUUID->"b8aef04b-afea-4dd1-908b-b7355bed81be"],
Cell[58496, 1456, 210, 4, 33, "Text",ExpressionUUID->"91b90885-0cf6-433d-b9a0-d8203eabaa6c"],
Cell[58709, 1462, 1586, 41, 68, "Input",ExpressionUUID->"de77c234-5c73-44cf-bfa1-f91e017c843c"],
Cell[60298, 1505, 289, 5, 33, "Text",ExpressionUUID->"9a9dea78-889b-427b-9102-a09134c2f5c3"],
Cell[60590, 1512, 717, 16, 44, "Input",ExpressionUUID->"2fd7fe6a-70f5-4561-b741-02f642ca6908"],
Cell[61310, 1530, 210, 4, 33, "Text",ExpressionUUID->"9b6efd0b-88ed-4a50-ae27-6ea51a41d511"],
Cell[61523, 1536, 878, 23, 44, "Input",ExpressionUUID->"741acee4-2b50-4020-953c-2cec586fe0fe"]
}, Open ]]
}, Open ]]
}
]
*)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment